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Traditional biometric systems, set to distinguish between a genuine user and 
an impostor can follow for example the Neyman-Pearson approach, in which 
for instance a threshold is set to the false acceptance rate. Some forensic 
biometric systems aim at producing decisions based on probability of two 
mutually exclusive propositions, knowing the evidence and some assigned 
prior as an end result. Methods used for forensic evidence evaluation are 
based on similar technology as the standard biometric systems, but they aim to 
evaluate the probability of the evidence knowing the propositions in a logically 
correct framework. This form of evaluation, derived from the Bayes theorem, is 
called likelihood ratio (LR) approach. It allows for the evaluation of the strength 
of evidence of different observations independently of the prior probabilities of 
the propositions tested. During the 20th century probabilities of the propositions 
or even categorical decisions were reported by forensic practitioners in forensic 
evidence evaluation, but a critical review of the logic (hard decisions made by 
forensic practitioners based on their subjective personal probabilities) applied 
in forensic evidence evaluation showed, that the LR approach presents a 
logically correct way to evaluate and report the strength of forensic evidence. 

In the absence of data and statistical models, the LR is usually assigned using 
a human based method, by a forensic practitioner on the basis of personal 
probabilities and to the best of her/his knowledge and experience. The strength 
of evidence assigned in this way is arbitrary and the resulting LR values are 
relative. Human-based methods are also rather difficult to test and validate. A 
long-term ambition in forensic biometric evaluation is to embed the LR 
inference model and biometric core technology into automatic procedures to 
support and complement human-based methods. It consists of developing 
more objective methods for the calculation of strength of forensic evidence 
based on data and statistical models and the validation of these methods. This 
thesis focuses on the latter topic: the validation of LR-based methods used for 
forensic evidence evaluation. 

Automated systems evaluating the strength of evidence are usually set to 
produce discriminating scores, describing the similarities or differences 
between 2 objects – a test specimen (for example a fingermark recovered from 
the crime-scene [1,2,3]) and a reference specimen (for example from a 10-print 
card of the suspected individual) using feature comparison algorithms (in 
fingerprints the features mostly constitute of minutiae position and orientation). 
The strength of evidence of these scores is then evaluated in favour of both of 
the prosecution and of the defence propositions within the LR framework.  

Biometric core technologies used for forensic evidence evaluation are usually 
developed (and their performance evaluated) on standardized datasets, which 
may not reflect to full extent the forensic conditions of the specimens-to-
evaluate (distortion or reduced quality to name a few). While the biometric core 
technologies may provide exceptional performance in their application domain 
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(security systems or other), when used in forensic conditions their performance 
may decrease severely.  

In the identity verification, when for example comparing two full and high 
quality fingerprints, it is possible to achieve a near 100% success rate using 
the automatic feature extraction and comparison algorithms when 
discriminating between the genuine user and an impostor. On the other hand in 
the process of forensic fingermarks investigation about 62% of the marks 
encoded automatically are automatically linked to a candidate from the 
database in the Netherlands [4]. Even though the technology has made a 
significant leap forward, a decrease in performance of state-of-the-art built-for-
purpose biometric systems can be observed when comparing forensic 
fingermarks with fingerprints.  Therefore validation of these methods (using 
forensically relevant datasets) is necessary to quantify and to make explicit the 
limitations of the LR-based methods (for example as a function of the quality of 
the specimens, quantity of the material, representativeness of the data). The 
final result of the validation procedure is then a binary decision regarding the 
suitability of the LR methods developed in forensic research and development 
(R&D) process for the use in forensic casework. According to the ISO 
17025:2005 section 5.4.5.2 [11] “…The laboratory shall record the results 
obtained, the procedure used for the validation, and a statement as to whether 
the method is fit for the intended use.”  

In the scope of this thesis a validation framework will be proposed for the 
validation of semi-automatic LR methods for forensic evidence evaluation. In 
[5], Mansfield and Wayman have devised a methodology for assessing the 
performance of biometric systems. In scope of their work they proposed to split 
the evaluation of a biometric system into three phases – technology, scenario 
and operational evaluation. A the three-way evaluation is a standard practice 
across a whole range of industries and we intend to keep the format proposed 
for validation of the forensic LR-based methods.  

The main contribution of this thesis is in the domain of the scenario evaluation. 
In order to perform the scenario validation in the forensic evaluation, one 
should start with answering following questions: “Which criteria should be 
used to validate a LR-based inference model?”, “What performance 
characteristics and metrics should be used to report the findings?”. All of 
these questions help in the development of validation framework for LR 
methods used for fingerprint evidence evaluation. The performance 
characteristics and metrics for validation of LR-based methods are motivated 
by the research carried out in speaker recognition, inspired by the work of N. 
Brümmer [6], D. Ramos [7,8], D. van Leeuwen [12] and others.  

A technology evaluation is out of the scope of the thesis, due to the fact that 
the algorithms in use have been subject to extensive benchmark tests and 
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evaluation by third parties. Standardized datasets play a significant role in the 
technology evaluation for example available through the National Institute of 
Standards and Technology (NIST). The operational evaluation is also out of 
the scope of the thesis and rests within the competence of the operational units 
responsible for implementation of LR-based methods in the casework 
processes. 

Thesis contributions 

As the title of the thesis “Validation of Likelihood Ratio Methods Used for 
Forensic Evidence Evaluation: Application in Forensic Fingerprints” suggests, 
this thesis mainly deals with the forensic interpretation of discriminating scores 
produced by Automated Fingerprint Identification System (AFIS). Hence 
despite the fact that the validation framework for LR methods used for forensic 
evidence evaluation was in theory developed for application across the whole 
range of biometric modalities, its applicability is presented in the area of 
forensic fingerprints.  

As a part of this thesis several literature surveys were conducted, addressing 
issues of guidelines and standards for validation of LR methods used for 
forensic evidence evaluation; measures of accuracy, discriminating power and 
calibration in (forensic) biometrics; use of Bayesian Networks for fingerprint 
evidence evaluation and evidential value of the first level detail fingerprint 
evidence.  

A theoretical framework has been proposed for validation of LR methods used 
for forensic evidence evaluation.  Different methods were used to calculate the 
LR’s from the fingerprint AFIS scores and their performance evaluated using 
the performance metrics proposed in the theoretical framework.  

The theoretical framework developed was applied to validate fingerprint LR 
method based on the AFIS scores. Several issues have been addressed in the 
course of the LR method development, namely robustness to the dataset shift 
(generalization), robustness to the lack of data (data sparsity) and coherence. 

Somewhat remotely stands the development of the Bayesian Network for the 
first level detail (General Pattern) fingerprint evidence evaluation. Original 
objective to use the metrics proposed in the theoretical framework to measure 
the performance of the Bayesian Networks developed was unfortunately not 
met within the thesis timeframe. 
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Thesis outline 

The thesis constitutes of the validation framework, proposed for the validation 
of LR methods used for forensic evidence evaluation; a collection of published 
articles dedicated to the performance characteristics defined in the validation 
framework, such as stability of the LR, robustness of the LR, measuring the 
coherence of the LR, Bayesian networks for the fingerprint evidence 
evaluation; the validation report and the appendix, in which the performance 
characteristics are used to evaluate the performance of human examiners. The 
thesis, is structured in the following way: 

Chapter 1 is dedicated to the introduction of the problem of validation. In this 
chapter the general validation criteria, as well as the performance 
characteristics and performance metrics are defined and summarized in a 
validation framework. A validation report is presented independently as an 
example in chapter 7. 

Chapter 2 focuses on stability of the LR’s in the lower region of the within 
source distribution and the direct dependence on the size of the population 
datasets. This region is particularly interesting, since the resulting LR’s are 
spread around the “LR = zero” value, which in the Bayes theorem represents a 
decision boundary between the two propositions – supporting either the 
prosecution or defence.  

Chapter 3 is dedicated to the topic of conditioning in the fingerprint evidence 
evaluation addressed for example in [3], by looking at the robustness to lack of 
data of two different approaches: the source independent and the source 
dependent. For a comparison of the two approaches, the size of the datasets 
used to produce the same source (SS) and different source (DS) distributions 
was limited to 100, 500, 1000 and 2000 score samples. 

Chapter 4 studies in detail the discriminating scores produced by an automatic 
fingerprint feature comparison algorithm. This chapter handles issues of data 
sparsity (especially in the tails of the SS and DS score distributions), 
multimodality of the resulting discriminating scores and dataset shift. The 
baseline LR method for producing the LR values from the similarity scores is 
established using the Kernel Density Function (KDF). An outcome of this work 
is a multimodal LR method, which unlike the KDF baseline method is robust to 
the above-mentioned issues. The performance of the two methods is evaluated 
using the Log Likelihood Ratio Cost [6], Equal Error Rates  [9] and presented 
using the Empirical Cross-Entropy plots [7,8], Tippett plots [10] and Decision 
Error Trade-off plots [9].  

The issue of coherence is addressed in chapter 5. Coherence is defined as 
“the variation of some measurable parameters in the features studied, 
perceived as influencing the strength of evidence”. In this chapter coherence is 
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observed by introducing additional features (e.g. minutiae points). Multimodal 
LR method defined in the Chapter 4 is used to produce LR’s for 5 – 12 
minutiae configurations. Performance of the LR method for different minutiae 
configurations is evaluated using the Log Likelihood Ratio Cost [6], Equal Error 
Rate [9] and presented using the Empirical Cross Entropy [7,8], Tippett [10] 
and Decision Error Trade-off [9] plots.  

Automated systems used for fingerprint evidence evaluation consider the 
second level fingerprint details (mostly minutiae position and orientation). The 
first level details (General Pattern, ridge count to name a few) are nowadays at 
best used by the forensic practitioners for exclusion of not-relevant candidate. 
In chapter 6 we attempt to quantify the strength of evidence of the General 
Pattern fingerprint evidence using a Bayesian Network. Even though the 
strength of evidence of the General Pattern alone is limited, the use of 
Bayesian Networks brings transparency in the inference process (despite the 
fact that the validation of Bayesian Networks is not trivial task). Two “data 
driven” and “built for purpose” Bayesian Networks – graphical models – are 
proposed in this chapter. 

Following the validation framework introduction in chapter 1, the empirical 
validation report for the multimodal LR model used for fingerprint evidence 
evaluation (developed in chapter 4) is presented in chapter 7.  

Thesis conclusions are presented in the epilogue, in which the work 
presented within the scope of this thesis is summarized and the main 
contributions are highlighted.  

In the appendix A a subset of the performance characteristics defined in the 
chapter 1 is used to evaluate the performance of human practitioners in 
fingerprint evidence evaluation. 
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ABSTRACT 

In this chapter the Likelihood Ratio (LR) inference model will be introduced, 
the theoretical aspects of probabilities will be discussed and the validation 
framework for LR methods used for forensic evidence evaluation will be 
presented. Prior to introducing the validation framework, following questions 
will be addressed: “which aspects of a forensic evaluation scenario 
need to be validated?”, “what is the role of the LR as part of a decision 
process?” and “how to deal with uncertainty in the LR calculation?” 
The answers to these questions are necessary to define the validation 
strategy based on the validation criteria. The questions: “what to validate?” 
focusing on defining validation criteria and methods, and “how to validate?” 
dealing with the implementation of a validation protocol, form the core of this 
chapter. 

The validation framework described can be used to provide assistance to 
the forensic practitioners, when determining the suitability and applicability 
of the LR method developed in the forensic practice by introducing 
performance characteristics, performance metrics, validation criteria and the 
decision thresholds. This chapter will start with the introduction of the LR 
inference model, followed by the validation framework proposed. 
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1. The LR method as a part of the inference model 

The likelihood ratios in this chapter and throughout this thesis are computed 
from biometric scores following the Bayesian inference model, hereafter 
inference model. 
 

 
Figure 1 – LR as a part of the decision process 

 
 
Biometric scores, as presented in figure 1 are the result of the trace-to-
reference sample comparison. Throughout the biometric modalities, this 
comparison can be performed using off-the-shelf commercial automated 
systems (in fingerprint modality the Automatic Fingerprint Identification 
System – AFIS). It is common that the forensic practitioner has very little 
control over the resulting biometric score (in speaker recognition these 
biometric scores take the form of a LR). These systems are commonly 
referred to as Biometric Black Box (BBB).  
 
In the fingerprint modality a fingermark (trace - T) and a fingerprint 
(reference – R) under evaluation are presented to the biometric black box. 
The AFIS system performs the feature extraction and comparison and 
produces a discriminative score of a certain magnitude. The performance of 
the BBB can be evaluated based on the scores produced. Typical tools 
include the Decision Error Trade-off (DET) plots where the Equal Error 
Rates (EER) can be measured or Receiver Operating Characteristics (ROC) 
from which the Area Under Curve (AUC) can be calculated. 
 
Consecutively the score feeds the inference model together with the 
database of traces (DB Traces) and database of references (DB 
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References), where depending on certain assumptions (different aspects 
discussed below) a LR method is used to produce the likelihood ratio. In 
ideal conditions DET plots and the EER of the biometric scores and the 
resulting LR after applying the inference model should be the same. 

1.1 Aspects influencing the choice of the LR method 

 
There are several aspects that need to be taken into consideration when 
choosing a LR method. Good examples of these aspects are the generation 
of the propositions, the calculation of the evidence, the evaluation of the 
evidence under the propositions, the choice of the evaluation datasets (in 
fingerprints modality commonly referred to as conditioning/anchoring). 

1.1.1 Generation of the propositions 

The propositions under evaluation are usually generated during the case 
pre-assessment phase, in which the likely and relevant propositions are 
distinguished from the less relevant ones. It is worth mentioning, that there 
might be more than two propositions that are relevant to the case [1,2]. 
 
In order to evaluate the strength of the evidence E in a LR framework, we 
need a pair of mutually exclusive propositions – one for the prosecution Hp 
and one for the defence Hd: 
 

• Hp: The trace originates from the individual/object suspected to be 
the source 

• Hd: The trace originates from another individual/object than the one 
suspected 

 
The LR (equation 1) compares the probability of observing the evidence (E) 
under either of these propositions: 
 

(eq. 1)
 

 
The LR is derived from the Bayes theorem (equation 2) in a following way: 
 

(eq. 2)
 

 

LR =
P(E |Hp )
P(E |Hd )

P(Hp | E)
P(Hd | E)

= LR×
P(Hp )
P(Hd )
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in which the LR, multiplied by the prior probability ratio P(Hp) / P(Hd) is equal 
to the posterior probability ratio P(Hp|E) / P(Hd|E). 
 
Probabilities vs. probability densities – the main difference is in the type 
of data used. When dealing with discrete data we express the LR using 
probabilities.  

(eq. 3) 

where again the E denotes the evidence and the prosecution and defence 
propositions are abbreviated using the Hp and Hd. 
 
When dealing with continuous data we express the LR for example using a 
probability density function f. 

(eq. 4) 

1.1.2 Calculation of the evidence 

The evidence is most of the time calculated as a discriminative score 
resulting from the comparison of the features extracted from the crime-
scene trace and a reference specimen collected from the suspect (biometric 
score of a fingermark and fingerprint comparison in case of the automatic 
fingerprint feature comparison algorithm). For automatic methods, this 
calculation is made using feature extraction and feature comparison 
algorithms.  

1.1.3 Evaluation of the evidence under the propositions 

A LR method is used to interpret the discriminative score as strength of 
evidence. Since the LR method can, in the simplest case, consist of 
parametric modelling the same-source – SS and different source – DS 
distributions, it can be referred to as a LR model. A detailed description of 
the LR method used, derived from [3], is beyond the scope of this chapter 
and more details on LR models can be found in chapters 4 and 5. Recall 
that the set of propositions from the section 2.1 is important to select the 
most relevant data and conditioning to fit with the circumstances of the case. 

Having defined a set of propositions against which the biometric score will 
be evaluated, one can proceed to build the LR model for example in a 
following way: 

LR =
P(E |Hp )
P(E |Hd )

LR =
f (E |Hp )
f (E |Hd )
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• use the minutiae comparison algorithm to compare a crime-scene 
fingermark to a fingerprint of the suspect to compute the evidence 
score (E) 

• use the minutiae comparison algorithm to compare the fingermarks 
of the suspect with the fingerprint of the suspect, obtaining a same-
source score distribution (SS) 

• use the minutiae comparison algorithm to compare a crime scene 
fingermark to a database of fingerprints of “other than the suspected” 
individuals, obtaining a different source score distribution (DS) 

• model the SS and DS distributions reflecting the conditions set by 
the two propositions 

• compute the strength of the evidence using equation 2  

It should be noted here that the evidence evaluation following the procedure 
described above represents the simplest case from the modelling point of 
view, in which the LR values are calculated parametrically based on the 
score distributions in the numerator and denominator of the LR. In reality 
more complex models (for example non-parametric) could be used instead. 
In this case the procedure described above may involve more steps.  In 
reality the simplest approach would be the one containing the least amount 
of assumptions in the inference process. 

1.1.4 Choice of datasets 
 
Conditioning on different types of data (in fingerprints commonly used 
conditioning configurations are person dependent / person independent) 
can be defined as a result of LR method using different sets of data, 
satisfying the propositions Hp and Hd. Since the majority of the LR methods 
used for evidence evaluation are data-driven/dependent, conditioning on 
different types of data will affect the resulting LR [1]. This issue has also 
been described in [2,4]. Also there may be several types of data satisfying 
the propositions – some more general and some more case specific.  
 
Datasets chosen for the validation of LR methods can be real or simulated 
forensic data. For the validation experiments the choice of the data is made 
according to their properties, such as known ground truth, quantity and 
quality. The data are constituted of pairs of specimens, the reference 
material and the trace material. 

Some concerns have been expressed regarding the use of simulated data. 
Real data are preferred1 over simulated data, but simulated data brings 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The preference for the real forensic data is solely based on the ambiguity linked to the 
origin of the simulated data and t he way the simulated data was produced. Establishing a 
degree of similarity/divergence between the simulated and the forensic datasets has been 
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considerable added value to real data, especially in the LR method 
development, when for example the variation in the data is extremely 
difficult to model (such as modelling distortion in fingerprints). The fact that 
real data are often limited in number, representativeness (sample bias) and 
may present outliers or missing values also advocate for the use of 
simulated data. A good practice and a minimum requirement for the use of 
simulated data would be to establish a degree of similarity to which the 
simulated data corresponds to the real forensic data (for example using 
methods such as Kullback-Leibler divergence, visual representations or 
other).  
 

• Ground truth – The ground truth regarding the origin of the data is 
usually known for simulated forensic data and according to their 
source we can label the datasets as originating from the same 
source (SS) or different source (DS). For the real forensic data the 
ground truth is per definition unknown, but in some particular cases 
a ground truth by proxy can be assigned. This pragmatic approach is 
only satisfactory from a methodological point of view, if there are 
reliable indicators of the similarity between the ground truth by proxy 
and the reference. These indicators can be intrinsic to the data, for 
example when this data, and particularly the trace material, are of 
such high quality that there is extremely strong evidence for the 
trace to belong to a given source. The indicators can also be 
external to the data, for example the existence of case information 
related to the data allowing to induce their origin. 

• Quality of the data: the quality of the data can be understood as a 
value that has no information about the proposition, which is true in a 
comparison, but despite of this, it can predict performance of that 
comparison. In other words, samples of high quality to compare in a 
forensic case predict good performance of that comparison, and low 
quality predicts bad performance. Under this definition, more 
robustness to variation or degradation indicates less loss of 
performance measure as the quality decreases. 

• Quantity2 of the data: the quantity of the data is a value or a 
component that may be expressed in numbers (Oxford dictionary / 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
deemed desirable (for example using the Kullback-Leibler divergence, however other 
measures can be used instead). 
2 Quality is not an intrinsic factor; it should always be evaluated relative to the purpose. In 
general, one can speak about quantity of information (with respect to the coherence 
performance characteristic) and ability to exploit, extract, compare and evaluate this 
information (with respect to the robustness). We can use a fingermark example - it is different 
to have a partial fingermark with 5 minutiae visible or a partial fingermark with 12 minutiae 
visible, from which only 5 can be used with the state of the art technology. The strength of 
evidence of the 1st one is intrinsically limited to 5 minutiae; the strength of the evidence of 
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Mathematics & Physics), e.g. length of the speech fragment, number 
of minutiae in a fingermark, etc. 

• Representativeness of the data: the representativeness of the data 
refers to the variation of the performance characteristics to a change 
in the data used to measure such performance. Therefore, a LR 
method will be more representative if the performance varies less 
when two different datasets are used. 

2. The LR in the forensic evaluation process 

LR methods are used across multiple forensic disciplines and the LR 
approach is being extensively used for example for the interpretation the 
DNA profiles. Some recommendations on the interpretation of the DNA 
mixtures have been issued in 2006 [5] stating that “The court may be 
unaware of the (LR) method if the scientist does not attempt to introduce it”, 
meaning that an attempt should be made by a scientist to explain the LR 
method in the simplest way possible to the court of justice. 
Recommendation 1 of this article it states that “LR is the preferred 
approach to (DNA) mixture interpretation”, indicating that there are other 
methods (Random Man Not Excluded) which don’t possess the same 
qualities as the LR approach, while in recommendation 2 of this article it 
states that “Even if the legal system does not implicitly appear to 
support the use of the likelihood ratio, it is recommended that the 
scientist is trained in the methodology and routinely uses it in case 
notes, advising the court in the preferred method before reporting the 
evidence in line with the court requirements”. 

Forensic research makes progress in the field of evaluation of forensic 
evidence. Currently a uniform and logical inference model is used for 
evaluating and reporting forensic evidence [6]. It uses a likelihood ratio (LR) 
approach based on the Bayes Theorem. Standards have been proposed for 
the formulation of evaluative forensic science expert opinion in UK [7]. A 
similar initiative is in progress in Europe, within the European Network of 
Forensic Science Institutes (ENFSI), the ENFSI Monopoly Project M1-2010 
entitled “The development and implementation of an ENFSI standard for 
reporting evaluative forensic evidence” [8]. 
Computer-assisted methods also have been developed to compute LRs, 
assisting the forensic practitioners in their role of forensic evaluators to 
perform inferences at source level [9]. Very early principles for using the LR 
approach in forensic evaluation can be found in the analysis of glass 
microtraces [10]. It has also been used in forensic evaluation fields focusing 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
the 2nd one is limited by the current state-of-the-art (the impossibility to exploit 7 minutiae 
because of lack of robustness of the minutiae comparison algorithm). 	  
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on human individualization, such as fingermark [11,12], earmark [13], 
speaker recognition [14] and hair [15]; or object individualization such as 
toolmarks [16], envelopes [17], fibre [18] and glass microtraces [19] (which 
represents a very early practical example of the use of the LR approach). 
But the LR approach has been firstly implemented in a casework process as 
a standard for the evaluation of DNA profiles [6]. 

2.1 Validation of LR methods 

The EU Council Framework Decision 2009/905/JHA [20] on the 
“Accreditation of forensic service providers carrying out laboratory 
activities” regulates issues related to the quality standards in two forensic 
areas: DNA-profile and fingerprint/fingermark data. This decision framework 
seeks to ensure that the results of laboratory activities carried out by 
accredited forensic service providers in one member state are recognized 
by the authorities responsible for the prevention, detection and investigation 
of criminal offences within any other member state. Equally reliable 
laboratory activities carried out by forensic service providers are sought to 
be achieved by the EN ISO/IEC 17025 accreditation of these activities [21]. 
For this reason, this framework focuses on the General requirements for the 
competence of testing and calibration laboratories as described in the EN 
ISO/IEC 17025 norm, and particularly on the requirements for the validation 
of non-standard methods in the section 5.4.4, as we consider the LR 
methods used for forensic evaluation as non-standard methods. 

To foster cooperation between police and judicial authorities across the 
European Union member states, the “Vision for European Forensic 
Science 2020” of the Council of the European Union DS 1459/11 [22] 
proposes to create a European Forensic Science Area. Member States and 
the Commission will work together to make progress in several areas, 
aiming to ensure the even-handed, consistent and efficient administration of 
justice and the security of citizens. Amongst them several are related to the 
validation of the methods used for forensic evaluation: 

• accreditation of forensic science institutes and laboratories 
• establishment of common best practice manuals and their 

application in daily laboratory work 
• application of the principle of mutual recognition of law enforcement 

activities with a forensic nature with a view to avoiding duplication of 
effort through cancellation of evidence owing to technical differences, 
and achieving significant reductions in the time taken to process 
crimes with a cross-border component 

• research and development projects to promote further development 
of the forensic science infrastructure 
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2.2 Necessity for guidelines 

Because the computer-assisted methods for forensic evaluation are still 
very new, the EN ISO/IEC17025 [21] and the ILAC-G19:2002 guideline for 
forensic laboratories [23] do not address the question of their validation. 
They mainly address the question of the validation of instrumental methods 
used for analytical purpose. More recently an explanatory document of the 
Dutch accreditation body, RvA-T015 issued in 2010 [24], provided some 
guidelines for the validation of the opinions and interpretations of forensic 
practitioners. In short, the criteria proposed for the validation of instrumental 
analytical methods are based on performance and the approach for the 
validation of the human-based methods used for interpretation is based on 
competence assessment. 
As the existing criteria used for interpretation only focus on human-based 
methods, they are not suitable for the validation of computer-assisted 
methods developed for forensic evaluation. 

2.3 Preliminary consideration 

In the forensic community there are major differences in the understanding 
of the concept of probability and of the LR were observed, which has direct 
consequences on the definition of the criteria for the validation of computer-
assisted LR methods developed for forensic evaluation. Therefore some of 
the points of view regarding the concept of probability and of the LR are 
discussed prior to the main discussion about the performance 
characteristics and criteria. 

3. The LR as a part of the decision process 

Several roles are devoted to the forensic scientists. The first role is 
dedicated to the forensic methodology. The forensic methodologists 
conceive new approaches and solutions to specific forensic open questions, 
for example the current attempt to find an adequate approach for the 
validation of computer-assisted methods developed for forensic evaluation. 

The second role focuses on the development. In the forensic research and 
development stages, a part of the role of the forensic developer is to test 
methods for forensic evaluation in the whole range of their application. In 
the validation stage, the range of validity of the LR method is tested in a Full 
Bayesian inference model, taking into account the prior probabilities of the 
propositions, the LR, the posterior probabilities of the propositions and the 
decision thresholds. The forensic developers create new technologies or 
adapt existing technologies for some specific forensic purpose, like for 
example the development of computer-assisted methods for forensic 
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evaluation. In these circumstances (development and validation) the 
forensic developer will consider the LR as part of a decision process and 
simulate the functionality of the methods developed for the whole range of 
decision thresholds (whole range of priors and decision costs or utilities). 

The third role focuses on the forensic practice. The forensic practitioners 
introduce new methods and use them for casework, for example using 
computer-assisted LR methods in their forensic evaluator role. In casework 
the forensic evaluator plays a role of neutral facilitator. The purpose is to 
consider the strength of the evidence regarding the alternative propositions 
provided by the criminal justice system, at least one proposition from the 
prosecution and one from the defence. Therefore as an evaluator, a 
responsibility for the forensic practitioner is to obtain the most relevant 
alternative propositions to be considered in the case; to provide the most 
correct strength of the evidence in form of a LR. In some particular cases 
the forensic practitioner can also supply relevant forensic information 
unknown from the trier of the fact to help to assign the prior probabilities. 
The forensic evaluator has also the responsibility to understand the scope 
and limitations of the method used, which are described in the validation 
report. The forensic evaluator should be careful not to be too prescriptive 
towards the trier of the fact, since there are legal standards and laws that 
are out of the scope and competence of the forensic evaluator.  

The trier of the fact has also the “freedom of proof”, meaning (s)he can, in 
some legal systems with due motivation, decide not to follow the statement 
of the forensic practitioner. In that sense the forensic evaluator remains an 
advisor, while the assignment of the prior and posterior probabilities and the 
decisions made on this basis are the responsibility of the criminal justice 
system, or the court in general.  

4. Validation strategy 

Two important components, identified for the validation of computer-
assisted LR methods used for forensic evaluation are a theoretical 
validation and an empirical validation of the inference model. The theoretical 
validation of the BBB rests upon the mathematical proof or falsification (not 
handled in this thesis) and the empirical validation of the LR method rests 
upon the acceptance or rejection of validation criteria. 

4.1 Theoretical validation 

Where applicable, the theoretical validation is handled using the falsifiability 
approach [25], focusing on proving / disproving mathematical formulae, 
propositions, lemmas and theorems, in general assuming that there is a 
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ground truth (trueness) of a given statement that can be falsified (disproved 
or nullified). This part of the validation is deductive (deductive reasoning), 
since it relies on mathematical properties and does not imply assumptions. 
The choice of any (LR) method needs to be validated empirically using 
appropriate measure of performance, even if it seems “theoretically so 
well grounded” that it may appear as mathematically correct. The term 
“theoretically so well grounded” should be approached with moderation; 
it refers to situations where the choices within a method are solidly 
grounded, for example based on deductive reasoning, justifying its use by 
proofs and mathematical rigor.  

4.2 Empirical validation 

The empirical validation focuses on the acceptance or rejection of chosen 
validation criteria. This part of the validation is inductive as it implies 
assumptions regarding the inference model(s) used for the evidence 
evaluation.  

The empirical validation incorporates a definition of the validation protocol 
and experiments, in order to demonstrate the acceptance / rejection of the 
chosen validation criteria. Where a validation process leads to quantitative 
results, a range of variable in which the LR method gives acceptable 
performance will be presented. The following elements have been deemed 
important and determine the structure of the validation protocol:  
 

• performance characteristics 
• performance metrics 
• graphical representations 
• validation criteria 
• experiments 
• datasets 
• analytical results 
• validation decision 

 
The order of the elements determines the structure of the protocol. The 
performance characteristics and the related performance metrics need to be 
identified. The validation criteria need to be established, such as the 
numerical threshold expressed in terms of the performance metrics chosen. 
An experiment (or series of experiments) has to be designed for the LR 
method under evaluation and appropriate sets of data have to be chosen for 
each step of the validation protocol. Each result produced on this basis is 
confronted with the appropriate validation criterion, in order to achieve a 
validation decision which would ideally take a binary form – favour either the 
acceptance / rejection of the LR method validated. The conclusion of an 
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empirical validation should be conditioned by all the assumptions made in 
the validation protocol, which should be mentioned explicitly at the 
beginning of the validation report. 

The scope of validation should be defined prior to the empirical validation of 
a LR method. Where applicable, requirements should be described in a 
form of thresholds for each validation criterion and overall desired 
functionality of this LR method. These thresholds can for example obtained 
by a comparison with the “state-of-the-art”. In absence of existing 
thresholds due to the novelty of the LR method, the thresholds can be 
specified based on the functionality of a “baseline method”. Such 
requirement can be formulated for example in a following way for a 
fingerprint LR method: “Equal Error Rate of LR method under evaluation 
using a NIST SD27 database <= 5%”3 or “CLLR of LR method under 
evaluation smaller than the baseline LR method”. Different aspects of 
empirical validation, broken down into necessary steps and categories are 
structured in the table 1 below: 

Table 1: Aspects of empirical validation 
Validation 
Aspects 

Performance 
Characteristic  

Performance 
Metric 

Graphical 
Representation 

 
Primary 
performance 
characteristics 

Accuracy 
 

Cllr  
 

ECE plot  
 

Discriminating 
power EER, Cllrmin 

ECEmin plot 
DET plot 

Calibration Cllrcal Tippett plot 
 
 
Secondary 
performance 
characteristics 

Robustness 
 
 

LR range 
 
 

ECE plot 
DET plot 
Tippett plot 

Coherence 
 
 

Cllr, EER 
 
 

ECE plot 
DET plot 
Tippett plot 

Generalization 
 

Cllr, EER 
 

ECE plot 
DET plot 

5. Propopsed performance characteristics 

As an outcome of the validation workshop, several performance 
characteristics have been identified for the validation of computer-assisted 
LR methods developed for forensic evaluation. Some of these were already 
defined, though the workshop helped to structure them and to clarify their 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 As mentioned in the first paragraph of this chapter, the EER can be measured already at 
the biometric score level. Propagation of the discriminating properties of the Biometric Black 
Box is a desirable property of a good inference model.  
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role. They are now structured in primary and secondary characteristics. The 
primary characteristics of the LR method under evaluation are related 
directly to performance metrics and focus on desirable properties (e.g. 
goodness of a set of LR values, in which we are assessing whether a set of 
LR values is good or bad, adequate or non-adequate, whether it has 
desirable properties or not). The secondary characteristics describe how the 
primary metrics behave in different situations, in some cases simulating the 
typical forensic casework conditions (e.g., specimens of degraded quality, 
varying quality conditions between the training data and the crime scene 
samples, etc.). The difference between the “primary” and “secondary” 
metrics is that the primary ones directly measure desirable properties of the 
LR, while the secondary complement the primary ones, and 
measure/present how the primary measures vary in different conditions (for 
instance quality of the data or quantity of information). The secondary 
characteristics may relate to a single primary metric. For instance, 
generalization may refer to the variation of Cllr (primary metric) when 
varying the amount of data.  
 
Originally performance characteristics have been defined in the context of 
validation of analytical methods for the measurement of physical and 
chemical quantities (metrology). The definitions of these performance 
characteristics can be found in the International Vocabulary of Metrology 
(VIM) [26]. The performance characteristics proposed for the forensic 
evaluation methods (shown below in table 1) have been chosen on the 
basis of their similarity with the original performance characteristics defined 
for the validation of analytical methods. To prevent confusion between the 
original and newly defined performance characteristics, we present both 
definitions in parallel in the sections 5.1 to 5.3. Where the VIM does not 
provide an exact definition, analogous definitions are extracted from sources 
cited in the ENFSI 2013 Guidelines for the single laboratory Validation of 
Instrumental and Human Based Methods in Forensic Science [27], keeping 
in mind that the fact that the two documents do not have the same status.  
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5.1 Proposed primary performance characteristics 

For forensic evaluation methods, three primary performance characteristics 
have been identified (presented below in table 2): 

 
 Table 2: Definitions of the primary performance characteristics for LR methods 

Performance 
characteristics 

VIM definition or other  
authoritative definition 

New definitions for  
forensic evaluation methods 

Accuracy4 “Closeness of agreement 
between a measured 
quantity value and a true 
quantity value of a 
measure” 
 
Closely linked to the 
accuracy is the precision, 
in VIM defined as follows: 
 
“Closeness of agreement 
between indications or 
measured quantity values 
obtained by replicate 
measurements on the 
same or similar objects 
under specified 
conditions”5 
 
 

Closeness of agreement between a LR 
computed by a given method and the 
ground truth status of the proposition in a 
decision-theoretical inference model. The 
LR is accurate if it helps to lead to a 
decision that is correct according to the 
ground truth of the propositions. 

In case of source level inference, the 
ground truth relates to the following pair 
of propositions: 

• Hp: the pair of samples tested 
originate from the same source 
(SS) 

• Hd: the pair of samples tested 
originate from different sources 
(DS) 

If an experimental set of LR values is to 
be evaluated, and the corresponding 
ground-truth labels of each of the LR 
values are known, then a given LR value 
is evaluated as more accurate if it 
supports the true (known) proposition to a 
higher degree, and vice-versa 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 In analytical methods accuracy and precision imply the existence of a true magnitude of 
certain physical phenomena that is to be measured. One can for instance measure the short 
side of a standard credit card, and performing 100.000 measurements arrive to a certain 
probability density. There is a “true” (exact) value in this case – the exact value of the short 
side of a credit card is in reality 53.98mm. By performing additional measurement (obtaining 
a size of 63.98mm) the accuracy/trueness then relates to the systematic error and represents 
distance (10mm in this case) between the reference value and the “true” value. 
On the other hand we understand, that due to the definition of the LR as being the result of a 
probabilistic inference and not a measurement, no quantitative ground truth exists for the 
LR because of the “Bayesian interpretation of probabilities as a degree of belief” [4]. 
Therefore it is not possible to establish univocal relation between a pair of samples and a 
numerical likelihood ratio value. 
5 In [30] the accuracy is deemed equal to validity and presision is deemed equal to reliability. 
In this work the validation is regarded as a process, rather than a single measurable entity. 
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Discriminating 
Power 

“Discriminating power of a 
series of k attributes is 
defined as probability that 
the two distinct samples 
selected at random from 
the parent population 
would be discriminated in 
at least one attribute if the 
series of attributes were 
determined. The 
distribution of each 
attribute over the 
population is assumed to 
be known from a study of a 
large number of samples” 
[28] 

Performance property representing the 
capability of a given method to distinguish 
amongst forensic comparisons under 
each of the propositions involved 

Calibration 
(Calibration 
loss) 

“Operation that, under 
specified conditions, in a 
first step, establishes a 
relation between the 
quantity values with 
measurement uncertainties 
provided by measurement 
standards and 
corresponding indications 
with associated 
measurement uncertainties 
and, in a second step, uses 
this information to establish 
a relation for obtaining a 
measurement result from 
an indication.” 
 
The concept of calibration 
used in the context of 
analytical methods has 
nothing to do with the 
definition of calibration 
used in statistics. 

In probabilistic terms can be defined as 
the property of a set of LRs. Perfect 
calibration of a set of LR’s means that 
those LR’s can probabilistically be 
interpreted as the strength of evidence of 
the comparison result for either 
proposition. Under those conditions the 
LR is exactly as big or small as is 
warranted by the data. The strength of 
evidence of well-calibrated LRs tends to 
increase with the discrimination power for 
a given method [32]. 
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5.2 Proposed secondary performance characteristics 

The following secondary characteristics have been identified (presented 
below in table 3): 
 

Table 3 - Definitions of the secondary performance characteristics 

Performance 
characteristics 

VIM definition or other 
authoritative definition 

New definitions for forensic 
evaluation methods 

Robustness The robustness / 
ruggedness of an analytical 
procedure is a measure of 
its capacity to remain 
unaffected by small, but 
deliberate variations in 
method parameters and 
provides an indication of its 
reliability during normal 
use” definition given in [27] 

The ability of the method to maintain 
performance (e.g., Cllr) when a 
measurable property in the data 
changes.  
 
For instance, method A is more 
robust to the lack of data than 
method B if, as the data gets 
sparser, the performance of method 
A degrades relatively less than the 
performance of method B.  
 
Note 1: Good indicator of LR 
method not being robust to the lack 
of data is when the LR method 
produces LR’s of unreasonable and 
not explicable magnitudes (e.g. LR 
= infinity). 
 
Note 2: When talking about 
robustness in forensic science, most 
of the time we speak about the 
stability of the method to the 
forensic conditions detrimental to 
the quality/quantity of data that 
prevent reliable measurement of the 
information, or of the features 
carrying the information. 
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Coherence Not defined in the VIM 
Oxford Dictionary:  

• The quality of 
being logical or 
consistent 

The quality of forming a 
unified whole 

The ability of the method to yield LR 
values with better performance with 
the increase of intrinsic 
quantity/quality of the information 
present in the data. It focuses on the 
variation of some measurable 
parameters6 in the features7 studied, 
perceived as influencing the 
strength of evidence, like the 
quantity of minutiae in the fingerprint 
field or the signal to noise ratio in 
the speaker recognition field. 

Generalization Any statement ascribing a 
property to every member 
of a class (universal 
generalization) or to one or 
more members (existential 
generalization) 
Example: Every function is 
a relation but not every 
relation is a function. 
Collins English 
Dictionary: Logic 
 

Property of a given method to 
maintain its performance under 
dataset shift. A dataset shift occurs 
when the joint distributions of inputs 
and outputs differs between the 
training data (used to build the LR 
methods) and the testing data 
(previously unseen) [29] used to 
compute LRs in operational 
conditions.  
 
For instance, LR method trained 
on a dataset A generalizes well to 
a dataset B if the LR method 
maintains its performance. 

6. Performance metrics and their corresponding graphical 
representations 

For each performance characteristics, the performance metrics and the 
associated graphical representations will be presented in this section. 

6.1 Decision Error Trade-off (DET) plot and Equal Error Rate (EER) 

The main idea behind the DET plot is linked to “thresholding” of a biometric 
score (or a LR) and ability of the BBB (or an inference model) to make 
decisions based on the decision errors – the False Acceptance Rate (FAR) 
and the False Rejection Rate (FRR). In biometric terms, the FAR refers to a 
likelihood of a biometric system (or an inference model) to accept an 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 Parameter can be seen as a measurable value of the degradation of the extracted features 
due to forensic conditions (signal to noise ratio, distortion, clarity). LR method can be the 
robust to these parameters. 
7 Feature is to be understood as a carrier of information extracted from raw data. Coherence 
is related to the information carried by the features. 
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unauthorized claim, while the FRR refers to a likelihood of a biometric 
system (or an inference model) to reject authorized claim. DET plot then 
represents a trade-off between these decision errors.  

DET plot defined in [31] is a 2 dimensional plot in which the FAR is plotted 
as a function of the FRR. The error rates are consecutively plotted on a 
Gaussian-warped scale. Thus, linearity of the DET curves happens when de 
distribution of the log(LR) values is normal. The closer the curves to the 
coordinate origin, the better are the discriminating capabilities of the method. 
The intersection of a DET curve with the main diagonal of the DET plot 
marks the Equal Error Rate (EER), which will be used as a performance 
measure to show the coherent behaviour of the LR method (for example 
when comparing forensic fingermarks in different minutiae configurations 
EER_5minutiae < EER_10minutiae as presented in figure 2 below). Even if 
the DET plot is meant to characterize a discrimination system (implying a 
decision) the information provided indirectly informs about the coherence of 
the LR method when evaluating datasets with different quantity of 
information (for example different number of minutiae in fingermark 
evidence evaluation). 

 

Figure 2 - DET plots present the performance of same LR method with different quantity of 
information. Blue line represents a method showing less evidential information captured in 
the LR of fingermark to fingerprint comparison for 6 minutiae, while the red line shows more 
evidential information captured in the LRs of fingermark to fingerprint comparison for 10 
minutiae configuration. 
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6.2 Tippett plots  

The Tippett plots [3] are representations of inverse cumulative density 
functions of LR’s. Each of the curves represents the decay of the proportion 
of the LR’s supporting one of the competing propositions. In the Tippett 
plots rates of misleading evidence can be observed when either of the 
proposition is true. These rates are visible at the intersection of each of the 
inverse cumulative density lines for either LR same source or LR different 
source and the imaginary line going through value zero on the X-axis. The 
log(LR) value zero on the X-axis on the log scale corresponds to the LR 
value of 1.  

 

 
Figure 3 – In this graph, the Tippett plots present the performance of same LR method with 
different quantity of information. Dashed blue line represents a method showing less 
evidential information captured in the LR of fingermark to fingerprint comparison for 5 
minutiae, while the solid red line shows more evidential information captured in the LRs of 
fingermark to fingerprint comparison for 10 minutiae configuration.  
 
On the Tippett plots, it is relatively easy to distinguish the quantity of the 
evidential information within the LR values captured by the LR method 
presented with datasets in different conditions. Tippett plots of a LR method 
evaluating the strength of evidence in fingermarks with 6 minutiae 
configuration (blue dashed line) and 10 minutiae configuration are 
presented in figure 3. Orange arrows indicate the increase of the surface of 
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the two curves in the Tippett plots when LR method is presented with 
additional information (here additional minutiae). 

6.3 Empirical Cross-Entropy (ECE) plot and the Log likelihood ratio 
cost (Cllr) 

The ECE plot [32,33] has been deemed “a useful representation of the 
performance and calibration of the LR values” and “an excellent 
complement of other already established methods (e.g. Tippett plots or DET 
plots)” [32].  

ECE and Cllr tend to get lower when the likelihood ratio leads to the correct 
decision. The difference relies on the interpretation of both measures. Cllr is 
interpreted as an average decision cost for all prior probabilities and costs 
involved in the decision process. On the other hand, ECE has an 
information-theoretical interpretation as the information needed to reach the 
correct value of the proposition, on average in a given set of LR values. Cllr 
is an average over costs and priors, and therefore is not giving the 
performance for a given value of the prior, but for an average of all possible 
priors. ECE can be represented as an ECE-plot, showing its value for a 
certain range of priors [32,33]. In fact, both measures are related, and it can 
be easily shown that Cllr is ECE at the prior probability of 0.5. In this sense, 
ECE seems a more general and interpretable performance metric than Cllr 
in a forensic context in which no decision is to be made by the forensic 
evaluator and in which the value of the prior changes very much from one 
case to another one. It also appears to be more suitable for the forensic 
practice, in which the aim is to show the range of application (scope of 
validity) of the LR method over a relevant set of priors, which are in general 
unknown to the forensic evaluator. On the other hand, Cllr is a single scalar 
measure, useful for ranking and comparison, and it in fact summarizes ECE. 

In [34] the Cllr is defined in a following way: 

Cllr = 1
2 ⋅Np

log2 1+
1
LRi

"

#
$

%

&
'

ip

∑ +
1

2 ⋅Nd

log2 1+ LRj( )
jd

∑      (eq. 5) 

where the Np and Nd are the number of target (same source) / non-target 
(different source) scores under evaluation, while the ip and jd indices present 
sum over the target / non-target set of LR’s.  
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In [32,33] the ECE is defined in a following way: 
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where the P(θp) and the P(θd) represent the prior probabilities of the 
propositions under evaluation and the Q(θp) and Q(θd) denote the reference 
probabilities.  

Closely related to the ECE plot are the measures of accuracy Cllr, 
discrimination Cllrmin and calibration Cllrcal [34,35]. The Cllr can be found on 
the intersection of the red (solid) curve in the ECE plot with the Priorlogodds 
= 0 (the lower the Cllr the better performance of the system); the Cllrmin can 
be found on the intersection of the blue (dashed) curve with the Priorlogodds 
= 0 (the lower the Cllrmin the better the discrimination of the LR method – 
see [31,32] for details); while the difference between these two lines on the 
intersection with the Priorlogodds = 0 represents the Cllrcal (the smaller the 
distance, the better the calibration of the LR method).  

 

 
Figure 4 – ECE plots of the same method, using the same data. On the left-hand-side the LR 
method is uncalibrated while on the right-hand-side calibrated. The main drawback of the 
uncalibrated LR method, apart from obviously higher Cllr value and greater calibration loss, is 
the fact that around Prior log10(odds) = 0.5 the uncalibrated LR method crosses the reference 
method (outputting always LR = 1). Loosely translated for Prior log10(odds) > 0.5 the 
uncalibrated method performs worse than a method constantly returning the “I don’t know” 
answer. 
 
Besides the information-theoretical aspect, the ECE provides another 
interesting insight – that is the “range of application” of the LR method under 
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evaluation. We can safely assume that one of the most desirable properties 
of a LR method should be to obtain “good” performance for the whole range 
of priors comparing to the reference method producing LR = 1 all the time 
(equivalent to I don’t know). Such a reference method has an interesting 
property – in long term it is perfectly calibrated, it is however as well 
completely useless for making predictions. Since the accuracy of a LR 
method in terms of Cllr represents “goodness” of predictions of the LR 
method under evaluation, a LR method can be deemed “good” if the Cllr 
values produced by a LR method don’t exceed the ones of the reference 
method.  

Figure 4 presents the ECE plots of the LR method using the fingermarks in 
5 minutiae configuration in 2 different settings – uncalibrated and calibrated. 
The event of LR method calibration not only minimizes the calibration loss of 
the LR method (here measured by the Cllr), it also extends the range of 
application of this method. While the range of application of the uncalibrated 
LR method in terms of Prior log10(odds) is <-2.5,0.5> (intersection of the red 
solid line and the black dotted line in the ECE plot in figure 4 left), the range 
of application of the calibrated LR method is <-2.5,2.5> (figure 4 right). 

7. Validation Experiment 

Before entering validation experiments, a set of validation requirements 
should be established. This can be done in two ways – either by examining 
the current state of the art or by establishing a baseline LR method from 
which the initial set of performance measures will be compared.  

Validation experiment itself should be divided into two stages – the method 
development stage and the validation stage. In the method development 
stage we propose to deal with processes related to the method selection, 
method training and method testing and measure primary performance 
characteristics as well as the generalization factor.  

In the validation stage we evaluate the LR method performance on the 
validation dataset (with a known ground truth) and measure the method 
response to the previously unseen data by measuring both – primary and 
secondary performance characteristics. An example of a validation 
procedure is shown in figure 5.  
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Figure 5 – Example validation procedure 

Modelling	  
stage	  
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7.1 Method development stage 

Recall that the main objective of the LR method development stage is to 
establish inference models with the most relevant data and the most robust 
statistical models in order to provide the most correct LRs in the widest 
scope of conditions possible. We use the primary performance 
characteristics applying the measures proposed, against which the LR 
method will be validated in the validation stage using the real forensic data. 
The training dataset is used to calculate the parameters of the LR method, 
while the test dataset is used to establish the robustness of the LR method 
to the previously unseen data. 
  
The LR method development stage of the validation framework uses 
independent datasets for the training and the test phase, in order to confront 
the method to previously unseen data of the same quality. The training 
dataset is used to define the parameters of the given method, while the 
testing dataset is used to establish the robustness, coherence and 
generalization of the method to previously unseen data. It is common 
practice in biometrics to test the robustness of a method based by using 
different training and testing datasets. The real difficulty is to determine a 
priori, whether the “previously unseen” test data has similar properties as 
the training data. This is easy to accomplish when splitting one dataset, 
however can pose a significant challenge when using two datasets acquired 
in different conditions (e.g. simulated and real data). A single dataset can be 
split into a training and test sub-sets, which should be non-overlapping, 
independent (previously unseen) and representative. Inadequate split of one 
single dataset can cause issues known as under / over fitting. In under-
fitting the LR method will be a bad representation of the dataset, while in 
over-fitting the LR method will fit too closely to the training dataset and will 
be less robust to the previously unseen data. Using the training and test set 
the cross-validation of the LR method developed in the method 
development stage is guaranteed. The validation of the LR method then 
follows the same logic – the dataset used for the validation should be 
independent and representative with respect to the dataset used in the 
method development stage. Ideally the real forensic data should be kept for 
the validation stage, ensuring the functionality of the method developed in 
real forensic conditions. It is common that well-performing methods in the 
method development stage lose some of their performance when subjected 
to real forensic data.  

8.1.1 Training dataset 

In a simple case where we aim for example to fit a normal distribution to the 
set of scores, our objective in the training phase is to use the training 
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dataset to obtain the parameters of the normal function (mean and variance). 
Usually more complex methods are used instead, such as linear logistic 
regression, beta or gamma distribution to name a few. However the 
principle is the same – use the training dataset to obtain the parameters for 
the LR method.  

7.1.2 Test dataset 

The test dataset is intended as the sanity check regarding the basic 
functionality of the LR method. It is used in the method development stage 
to evaluate the robustness of the LR method to the previously unseen data. 
In a simple case, we take the LR method developed on the testing dataset 
(using the parameters calculated on the testing dataset) and measure how 
closely these parameters fit the test dataset. This process can be repeated 
several times and is usually referred to as cross-validation (“n-fold” cross 
validation if repeated “n” times). 
 
Since the test dataset appears to the LR method as previously unseen, sub-
optimal performance of the LR method is expected. Therefore prior to 
evaluating the performance of the LR method we can calibrate the LR 
values produced by the LR method on the test dataset (usefulness of the LR 
method calibration is highlighted in the section 6.3 of this chapter).  
 
If the performance of the LR method is satisfactory and the validation 
criteria8 are met, one can proceed further to the validation stage. If following 
the calibration step the LR method shows sub-optimal performance and fails 
to meet the requirements set by the validation criteria following steps are 
possible:  
 

• refine the training parameters of the LR method  
• use alternative LR method 
• relax the validation criteria 

 
The order in which the steps should be applied should be critically assessed 
– based on the time / budget constraints. One can spend months trying to 
refine parameters of a completely ill-performing LR method, whereas an 
alternative LR method might give comparable (if not better) results. Relaxing 
the validation criteria should be used as a last resource, however this 
should be critically addressed in the validation report. It might be therefore a 
good idea to evaluate the performance of different LR methods in the 
training stage prior to moving to the test stage.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 Validation criteria defined previously in the “validation scope” either in comparison to the 
state-of-the-art or to the baseline method. 
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7.2 Validation stage 

In the validation stage the LR method developed in the method 
development stage uses the forensic dataset, in order to evaluate the 
primary and secondary performance characteristics. As mentioned earlier, 
the LR method developed on the training dataset may show sub-optimal 
performance on the previously unseen dataset, mainly due to the dataset 
shift between the datasets used in the method development stage and the 
validation stage. Calibration is therefore a mandatory requirement for the 
validation stage prior the LR method performance evaluation (usefulness of 
the LR method calibration is highlighted in the section 6.3 of this chapter). 
Should the validation criteria not be met by the LR method on the forensic 
dataset, a logical step is to move back to the method development stage 
and either refine the existing LR method (taking into account the specific 
settings of the forensic dataset) or develop alternative LR method. 

8. Validation criteria 

The validation criteria should address questions like: “What to measure?”, 
“How to measure?” as well as “What values should be observed or 
deemed satisfactory?”  
 
For example, newly developed biometric technologies used as black boxes 
are subject to evaluation using standardized datasets, in fingerprints, good 
examples are the databases NIST SD04 or NIST SD27 of the National 
Institute of Standards and Technology. We shall refer to this approach as “a 
comparison with the state-of-the-art”, since the validation criteria can be 
deduced based on the performance of state-of-the-art algorithms. It should 
be noted here, that establishing the validation criteria as strictly equal to the 
performance of the state-of-the-art only makes sense in the case of either 
using the state of the art algorithm or being sure that the LR method 
proposed will be able to directly compete against and / or outperform the 
state-of-the-art, which might be rather challenging.  
 
In case when such a special database does not exist and comparison with 
state-of-the-art methods is not an option; a baseline method can be 
developed, for example based on the score distributions (SS and DS) of the 
training dataset. We shall refer to this approach “a comparison with the 
baseline”.  
 
Alternatively, multiple LR methods can be developed at the same time on 
the training dataset, of which one will play the role of the baseline method 
from which the validation criteria will be defined. LR methods proposed, 
including the baseline, should be fit for purpose – a gamma function will not 
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be a good representation of clearly normal-like training set SS and DS score 
distributions – thus LR methods obviously not fit for purpose should be 
eliminated.  

9. Validation decision 

A validation procedure9 should be concluded by a binary expression (e.g. 
pass / fail) regarding the LR method being fit / not-fit for forensic evaluation 
casework.  
A set of recommendations can be issued alongside the validation decision, 
addressing mainly the shortcomings and limitations of the LR method under 
evaluation. These may contain applicability range of a LR method, 
clarity/distortion limits, description of sampling procedures, comparison 
algorithms used etc.  

10. Validation report 

The validation of non-standard methods is described in the ISO/IEC 17025 
standard in section 5.4.4. “When it is necessary to use methods not covered 
by standard methods, these shall be subject to agreement with the 
customer and shall include a clear specification of the customer's 
requirements and the purpose of the test and/or calibration. The method 
developed shall have been validated appropriately before use.” In the 
section 5.4.4 the ISO standard also lists the information recommended: 

a) appropriate identification; 
b) scope; 
c) description of the type of item to be tested or calibrated; 
d) parameters or quantities and ranges to be determined; 
e) apparatus and equipment, including technical performance requirements; 
f) reference standards and reference materials required; 
g) environmental conditions required and any stabilization period needed; 
h) description of the procedure, including 

- affixing of identification marks, handling, transporting, storing and 
preparation of items, 
- checks to be made before the work is started, 
- checks that the equipment is working properly and, where required, 
calibration and adjustment of the equipment before each use, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 The validation of a method should be understood as a procedure that uses the validation 
protocol. 
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- the method of recording the observations and results, 
- any safety measures to be observed; 

i) criteria and/or requirements for approval/rejection; 
j) data to be recorded and method of analysis and presentation; 
k) the uncertainty or the procedure for estimating uncertainty. 

Prior to starting the validation of a LR method, a validation plan should be 
drawn by a forensic practitioner. It is mandatory for the reader to keep in 
mind, that the ISO/IEC 17025 standard was predominantly developed for 
the validation of analytical methods, therefore not all of the recommended 
information is applicable to the validation of LR methods. Especially the 
points e), f), g), h), j) and k) will be rather challenging to defend in the 
interpretation of forensic evidence. In compliance with the remaining 
recommendations from the ISO/IEC 17025 standard the validation plan 
should contain (but is not limited to) the following: 
 

• Identification of LR method – point a) 
• The intended use – point b) 
• The performance characteristics – point d) 
• The performance metrics – point d) 
• The validation criteria – point i) 
• The scope of the validation (Range of application of the LR method) 

– point b) 
• Validation time span (applicable in cases in which the datasets used 

in the LR method development/validation stage are envisaged to get 
obsolete) 

 
An example of the validation report is presented in chapter 7 and the 
readers not interested in all the different aspects regarding the stability of 
LR, robustness to the previously unseen data, LR method selection, 
presentation of coherence of the LR method or the Bayesian Networks 
developed for the evaluation of the first level detail fingermark evidence 
evaluation are advised to fast forward to the chapter 7. 
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1. Abstract 

This article focuses on the statistical evaluation of the fingermark evidence 
using the likelihood ratio (LR) approach. It studies the influence of the 
quantity of data used to model the within (WS) and between (BS) source 
variability. The LR system built for the experiment uses an Automated 
Fingerprint Identification System (AFIS) feature extraction and comparison 
algorithm, fingermark and fingerprint datasets coupled with a generative 
approach for modelling the WS and BS variability. This article concentrates 
on the computation of LRs of the same source in the lower region of the WS 
distribution. It analyzes the behaviour of the LR with an increasing number 
of entries in the WS datasets while maintaining the constant proportion of 
the BS dataset in an attempt to determine the amount of same source 
scores necessary to achieve consistent LR performance.  
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2. Introduction 

While the question of the comparison of complete fingerprints seems to be 
an issue long solved in the biometric world with many commercial 
algorithms and applications available, quite some issues arise when 
analysing forensic fingermarks (traces). When a fingerprint and a fingermark 
are subjected to forensic evaluation, the fingermark is almost always partial; 
its quality severely degraded due to uncontrolled imposition (clarity, 
distortion) and due to the effects of the development methods.  

While the AFIS matching and comparison algorithm is able to achieve great 
results in terms of performance and speed while producing shortlists of 
candidates, it is not used in the current practice for the statistical evaluation 
of fingermarks and fingerprint evidence. Forensic evidence (E) in this case 
is considered the similarity score resulting from the fingermark and 
fingerprint comparison. In order to quantify the weight of the forensic 
evidence we start off with a set of mutually exclusive propositions, the one 
of the prosecution Hp and the one of the defence Hd:  

• Hp – the fingermark originates from the individual that is also the 
source of the fingerprint  

•  Hd – the fingermark originates from an unknown individual, randomly 
selected 

         (1) 

where Pr indicates the probability of observing the evidence E given one of 
the two propositions.  

The calculation of the LR implies the modelling of the WS and BS scores 
distributions using a discriminative, generative or hybrid approach [1]). The 
main objective of this article is to study the influence of the size of the 
datasets on the stability of the LR. The influence will be studied using a 
generative approach1 for the modelling of the within and between source 
variability.  

An ideal situation would be to dispose of a quantity of score observations 
large enough to cover the whole range of the BS and WS distributions. 
However in the tails of these distributions a well-calculated LR value is 
difficult to obtain, due to the rarity of the scores. In the regions where the 
number of scores is sufficient to describe reliably the WS and BS the LR 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 In the generative approach we “generate” the score distributions from the the discrete 
datasets (similarity scores). 

LR = Pr(E |Hp)
Pr(E |Hd)



Influence of the datasets size on the stability of the LR 
 

	   55	  

value is generally low, and the stability of the LR can be considered as an 
indicator for the robustness2 and of the reliability3 of the method.  

In this work we shall analyse the region of the lower tail of the WS score 
distribution - see figure 1 (similar issues addressed in [6]). We are interested 
in this region mainly due to the fact that similarity scores in this particular 
area can “shift” the scales in favour of either of the propositions. Ideally we 
would like to observe a stabile LR support to either of the propositions, 
however with the varying number of the WS scores we observe variation in 
the LRs as well.  

 
Figure 1. – Area of interest (lower tail of the WS score distribution) 

 

In this initial study we will model the similarity scores produced by the AFIS 
algorithm using the Kernel Density Function (KDF). This choice is based on 
the fact that we are dealing with discrete datasets and because the 
comparison algorithm produces multimodal score distributions. Since we are 
interested in observing the influence of the different sizes of datasets on the 
LR stability, the over-fitting, which in most of the cases is considered a 
drawback of the KDF seems to be a desirable side-effect for this particular 
application. 

Before any method developed can be used in a forensic casework, a 
validation step needs to provide insight about its robustness and reliability 
(LR > 1 if Hp true, LR < 1 if Hd is true). The aim of this article is to study the 
stability of the LR produced and in particular the variations due to data when 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Robustness is defined as the ability of a method to maintain the tendency of its 
performance when reducing the quality conditions of the data under examination. 
3 Reliability defined as the capability of the method of not degrading the trueness of the LR 
when used in all the possible cases for which it has been designed. 
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calculating probabilities for both the numerator and denominator of the LR. 
We will show the influence of lowering the quantity of data used for 
modelling the WS and BS scores on the stability of the LRs. Despite the fact 
that relatively small number of individuals is used in this study, it provides a 
valuable insight on the LR stability depending on the decreasing number of 
WS scores.  

3. Datasets used 

For modelling the BS scores, large quantities of reference fingerprints are 
available, for example ten-print cards originating from a police fingerprint 
databases. It is not necessarily the case for WS scores, where a limited 
number of fingermarks and corresponding fingerprints with the ground truth 
known is available. Different approaches have been proposed in the 
literature to handle the data sparsity under HP [3, 4]. 

Both methods rely on the use of simulated fingermarks from the suspected 
individual. In [4] these simulated fingermarks are compared with a set of 
corresponding fingerprints (multiple fingerprints per finger), when in [3] large 
quantities of simulated fingermarks are compared with a single fingerprint in 
the fingermarks produced by this method are not completely equivalent to 
real crime-scene fingermarks but for the purpose of this article and based 
on the results published in [3], their similarity is considered as sufficient (see 
figure 2). The number of minutiae and the effect of distortion, present in the 
set of fingermaks used, represent the key elements of variability for the 
calculation of the evidential value. 

 
 

Figure 2. – Simulated fingermark on the left vs. visualized                     
real fingermark from a crime-scene on the right 
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Simulated fingermarks with 8 minutiae configurations were chosen for this 
article, as a majority of the fingermarks recovered as pieces of evidence 
contains less than 12 minutiae, which is the numerical standard in most 
countries using a numerical standard. In these countries fingermarks with 
less than 12 minutiae are currently not considered as evidence that can be 
presented at court and would primarily benefit from the approach described 
in this paper.  

3.1 LR model and size of the datasets used 

Figure 3 illustrates the LR model used in this article. The nomenclature used 
to describe the different datasets refers to the one used in [2]. 

 
Figure 3. – The LR model 
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The fingerprint police database consists of electronic copy of ten-print cards. 
For the purpose of this article we have selected a population of 20.000 
individuals (200.000 fingerprints) to represent the BS population.  

Since we aim to establish the stability of the LRs in the lower region of the 
WS score distribution, we will use data from four individuals, for which we 
have large quantity of simulated fingermarks available – ranging from 2.179 
to 8.455. In practice, collecting a WS dataset counting 1000s’ of fingermarks 
for a suspected individual is a time consuming procedure which largely 
depends on the willingness of the suspect to cooperate (in many cases 
impossible).  

In the following section a forensic evaluation will be described together with 
the calculation of a likelihood ratio.  

4. Evidence Evaluation 

As indicated in figure 3, we proceed with evidence evaluation in multiple 
stages: 

• Establish the value of the evidence (E) – a similarity score between 
a fingermark or fingerprint 

• Model the WS distribution based on the comparison of the marks 
and prints of the same individual (same finger) 

• Model the BS distribution based on the comparison of the marks 
and prints of the different individual (different fingers) 

• Calculate the Likelihood Ratio 
 

According to [5] the LR is calculated in the following way: 

LR =
Pr(E |Hp ,ΔSS (m, p))
Pr(E |Hd ,ΔDS (m, p))

 (2) 

where: 

ΔSS (m, p) is the similarity score of the marks and print of the same source 

ΔDS (m, p) is the similarity score of the marks and prints of the different 
source 

In order to obtain calculate the evidence same source in the same dataset, 
one of the simulated fingermarks (on a leave-one-out basis) will play the 
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role of the crime scene mark and will be compared to the reference print of 
the same individual. If the total number of the simulated marks per individual 
is n, a total of n-1 fingermarks will be available to form the WS score 
distribution. 

As indicated earlier, for WS and BS score distribution modelling we will use 
the KDF function. 

For measuring the stability of the LRs we will vary the number of the WS 
and BS scores using random sub-sampling. Ideally, with increasing number 
of the WS scores we should observe more stable LR. More data is in 
general more informative, especially in the tails of the WS and BS 
distributions. 

In the following section we shall study the influence of the size of the WS 
and BS datasets on the stability of the LR. 

5. Method used 

Since we aim to examine the lower tail of the WS score distribution, we will 
focus on the similarity score interval 375 – 900 (shown in figure 1). The 
similarity scores are dimensionless, which advocates for the use of the LR 
framework. Simulated fingermarks of 4 individuals are used in this study.  

Table 1 – Proportion of simulated fingermarks 

 

 

 

Individual 1 is used as a benchmark (largest number of simulated 
fingermarks available) to study the influence of the varying size of the 
simulated marks and police database datasets. We defined 5 experimental 
conditions:  

1.Equal proportion of WS and BS scores (Symmetric) 
2. WS[8455] and BS varying (WSmax) 
3. WS[500] and BS varying (BSmin) 
4. WS varying and BS[500] (BSmin) 
5. WS varying and BS[200’000] (BSmax) 
 

These conditions (where available) will be applied to all 4 individuals.  

 No. of fingermarks 
Individual 1 8455 
Individual 2 4666 
Individual 3 3179 
Individual 4 3758 
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For all scenarios, the smallest number of WS scores tested counts 500 with 
500 scores increments until the WSmax (where available). Similarly the 
smallest number of BS scores configuration counts 500 with 500 scores 
increments until BSmax. Since we have a lot more scores available for the 
BS, we will examine the influence of the amount of BS scores on the 
stability of the LR with 20.000, 50.000, 100.000 and 200.000 scores. 

 
Figure 4 – Four scenarios for LR stability analysis 

 

Please recall that we selected the similarity score interval range from 375 to 
900 (see Figure 1). Based on the initial assumption that the LRs in this 
region are of low order of magnitude, we will place the LRs into 4 bins (10-2 
< LR < 10-1; 10-1 < LR < 100; 100 < LR < 101, LR > 101) in order to analyse 
the LR behaviour. We are particularly interested in observing the varying 
proportions of the LRs crossing the value of the neutral evidence (LRE = 1), 
changing the support of Hp to Hd and the actual value of the LRs 
(observation of the E at a fixed value with changing the experimental 
conditions). The influence of the varying sizes of the WS and BS datasets 
on the stability of the LR is presented in the following chapter. 
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6. Results 

The experimental setup with the most similarity scores (BSmax, WSmax) 
was considered as ideal condition and best achievable results, which we 
aim to approach with increasing number of the similarity scores.  In this 
sense, we want to get as close to the “ideal LR value”4 with the minimum 
number of scores. Reader should also keep in mind that our aim here is to 
understand the data rather than draw conclusions of the rather erratic 
behaviour of the LRs produced. 

Results are divided into two sections: firstly we will look at the stability of the 
LR for the individual 1 (counting the most WS scores), while in the second 
part we will attempt to replicate the results for the remaining individuals. 

The sum of all the LRs in the 4 LR ranges is equal (126 – given by the total 
number of E scores for which the LRs have been calculated).  

6.1 LR stability analysis 

In figure 5 one of the populations (BS or WS) is fixed while other one varies 
from 500 to 8000 (however LRs have been analysed on the whole range of 
BS 500 - 200000). 

 
Figure 5 – Experimental setups results for individual 1 

 

The stability of the LRs can be observed and compared with varying size of 
the BS population (BSmin, BSmax…) The experimental results for the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 Ideal LR value is the one obtained with the most ammount of data (BSmax and WSmax). 



Chapter 2 
 

	  62	  

individual 1 show that about 4000 scores (WS) are needed to obtain a 
stabile behaviour of ± 10% of the LR values, for the selected LR bin ranges.  

Calculated LR values for each piece of evidence E under different 
experimental conditions are presented in figure 6 on the log-scale. For the 
experimental condition 1 (symmetric WS and BS) [1000] 85% of LRs 
support Hp, on contrary in the symmetric set WS and BS [4000] only 46% 
supports Hp (horizontal line in figure 6 indicates LR = 1 and demonstrates 
the LR shift in support of different hypothesis).  

The size of the BS population does not have a significant influence on the 
overall stability of the LR. The symmetric experimental condition converges 
the fastest to the ideal LR value; therefore this condition will be replicated 
for the remaining individuals. 

 
Figure 6 – log(LRs) presented with varying BS population 

6.2 Replication for the remaining individuals 

The stability of the LRs is analysed using the experimental condition 1 
(symmetric WS and BS). Figure 7 illustrates the experimental results for the 
individuals 2, 3 and 4.  

The ideal LR value was calculated from the LRs in the configuration (BSmax 
and WSmax) of each individual. No LR lower than 10-1 was recorded for 
individuals 2 – 4; hence this bin will remain empty.  

The results observed advocates for using the LR calculation method as 
described in [5]. Despite of the different size of the within source dataset for 
the 4 individuals, the stabilizing effect of increasing the size of the datasets 
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on the LRs (as observed in the benchmark) was replicated with amongst all 
four individuals. Analysing the results separately, within source scores 
dataset counting 4500 seems sufficient to reach stability of ± 10% of the LR 
values for individual 2, 3000 for individual 3 and population size of 2000 for 
individual 4. More general conclusions cannot be drawn from such a limited 
number of individuals. 

 
Figure 7 – Differences in stability of the LR amongst 4 individuals using symmetric 

experimental condition. 

7. Discussion and conclusions 

The aim of this article was to study the influence of the size of datasets on 
the stability of the LR. Judging from the experiments conducted, the 
increase in the between source population size does not seem to have 
much influence on the LR stability. The symmetric experimental setup has 
shown to produce the most stable LRs, while a significant variability was 
observed between the WSmin and WSmax experiments (see figure 6). 

The stabilizing trend of the LR due to the increasing size of within source 
population was replicated for all four individuals, however the results show 
differences in the minimum number of the within source scores necessary to 
obtain a stable LR amongst the different individuals and call for further tests 
with datasets of comparable sizes before a generic threshold can be set.  

The use of simulated fingermarks in the experiments show that they are a 
valuable evaluation tool, as they are relatively easy to produce in significant 
quantities and one can be “beyond any doubt” certain regarding their origin.  
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8. Future work 

This article is intended as a preliminary study on the stability of the LRs and 
shows how the LRs behave with varying population sizes. The future work 
will focus on obtaining similarly large datasets of simulated fingermarks to 
individual 1 and extend the study for the E different source. Following 
research will be dedicated to non-parametric methods and model-based 
approaches.  
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1. Abstract 

Different approaches have been adopted throughout the scientific 
community for the fingerprint evidence evaluation using Likelihood Ratios 
(LR). Such approaches necessitate the use of fingerprint and fingermark 
data with a known ground truth of their origin. Depending on the approach, 
the type and quantity of data used to model the within and between source 
variability varies. 

In this work we focus on evaluating the robustness to lack of data of two 
different approaches: the Non-Anchored and the Finger-Anchored. 
Robustness is defined as the ability of the method to maintain its 
performance when reducing the quantity of data. For a comparison of the 
two approaches we will limit the size of the training datasets used to 
produce the same source (SS) and different source (DS) distributions to 100, 
500, 1000 and 2000 score samples, maintaining the quantity of the 
fingermarks with the known origin used for testing (8455 fingermarks). 
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2. The Approaches 

In order to maintain a relative equivalence when comparing the two 
approaches, the Kernel Density Function has been used in both of them to 
model SS and DS score distributions. The use of other score to LR mapping 
functions would also be suitable.  

2.1 The Finger-Anchored Approach 

The finger-anchored is suspect-specific, meaning that in both the numerator 
and denominator of the LR are conditioned on suspect’s fingerprint.  

LRfinger =
P(Δ(my, px) |Hp , I,Δ([mx], px)
P(Δ(my, px) |Hd , I,Δ([mz], px)

 

where: 

my is the fingermark found on the crime scene 
px is the fingerprint of the suspect  
Δ([mx], px) is the distance between the marks and prints of the suspect 
Δ([mz], px) is the distance between the marks of other individuals and the 
print of the suspect 

2.2 The Non-Anchored Approach 

In the non-anchored approach we aim to model the world population in both 
the numerator and denominator of the LR. 

LRnon =
P(Δ(my, px) |Hp , I,Δ([mẑ, pẑ])
P(Δ(my, px) |Hd , I,Δ([mẑ],[pẑ])

 

where: 

my is the fingermark found on the crime scene 
px is the fingerprint of the suspect 
Δ([mẑ, pẑ]) is the distance between marks and prints of the same source 
Δ([mẑ],[pẑ]) is the distance between marks and prints of the different 
source 



Fingerprint Evidence Evaluation: Robustness to the Lack of Data 
 

	   69	  

3. Problem description 

The question is, whether it is more suited for the forensic evidence 
evaluation to have limited quantity of a suspect-specific data modelled using 
a robust approach, or a large quantity of generic data modelled by an 
approach where robustness might change with increasing training datasets. 

Our initial assumption, based on the fact that the pool of the training dataset 
is significantly larger in the non-anchored than in the finger-anchored 
approach, is that the robustness of the LRs produced should improve with 
increasing quantity of training data.  

4. Datasets used 

The main difference in the two approaches is in the different datasets used 
for training the models. For obtaining the SS and DS score distributions we 
sub-sample with replacement 1000 times the training datasets of both 
methods. Our target distributions contain 100, 500, 1000 and 2000 samples. 

Table 1. Datasets used for training and testing in different approaches. 

 
Approach 

Training Data Set Testing Data Set 

Same 
Source 

Different 
Source 

Same 
Source 

Different 
Source 

Non-Anchored 16.560 31.200.000 8.455 8.455 

Finger-
Anchored 

8.455 16.560 8.455 8.455 

5. Results 

The robustness to the lack of data of the two approaches will be 
demonstrated by calculating the distribution of the Cllr and Cllrcal, which are 
a measure of performance and calibration loss, over the 1000 sub-sample 
iterations. 

Figure 1 illustrates the performance of the two approaches, compared over 
1000 sub-sample iterations and shows robustness of the finger anchored-
approach when the quantity of the training data decreases compared to the 
non-anchored. 
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Figure 1. Cllr values across the different quantities of training data samples. 

 

In Figure 2 we observe the variation in the calibration loss over the 1000 
sub-sample iterations, when decreasing the quantity of training data. For 
small-sized training datasets the finger-anchored approach shows smaller 
calibration loss compared to the non-anchored approach. 
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Figure 2. Cllrcal values across the different quantities of training data samples. 

6. Discussion and conclusion 

In the figures above we observed that the performance Cllr and calibration 
loss Cllrcal of the finger-anchored approach remain stable when the size of 
the training dataset decreases. For the non-anchored approach both the 
performance and calibration loss decrease when the size of the dataset 
decreases. 

From the Cllr values obtained we can also conclude, that the finger-
anchored approach outperforms the non-anchored approach for the training 
dataset containing 100 similarity scores as most of the time in the forensic 
evidence evaluation we are dealing with limited-sized datasets.  

Therefore the finger-anchored approach is probably better suited for the 
task, together with similar approaches that are conditioned on the suspect. 
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1. Abstract 

This article deals with the problem of validation of Likelihood Ratios (LR) 
calculated from multimodal distributions of scores computed by an 
Automated Fingerprint Identification System (AFIS) feature extraction and 
comparison algorithm. This algorithm was primarily developed for forensic 
investigation rather than for forensic evaluation. The fingermark and 
fingerprint comparison is speed-optimized and performed on three different 
stages, each of which outputs discriminating scores of different magnitudes, 
together forming a multimodal score distribution. In this work we will 
highlight some of the problems related to modelling such distributions using 
standard methods, such as Kernel Density Estimate (KDE) and propose 
solutions to issues like data sparsity, dataset shift and over-fitting. 
Furthermore we will present a method robust to the above-mentioned issues. 
We should stress here, that the aim of this article is to present a global 
solution to a range of problems of a given AFIS algorithm, applicable in 
similar cases when a likelihood ratio needs to be calculated from a 
multimodal score distribution.  
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2. Introduction 

In this work we propose an approach for handling multimodal score 
distributions produced by an “AFIS algorithm” (shorthand notation for AFIS 
feature extraction and comparison algorithm), with the aim of LR 
computation for forensic fingermark evaluation [1]. The problem of the LR 
calculation from similarity scores, such as those produced by an AFIS 
algorithm has been described before [2, 3].  Commercial AFIS algorithms 
are designed with computational efficiency in mind; therefore a multi-stage 
scoring process resulting in multimodal distribution may be common among 
other commercial AFIS algorithms. The fingermark and fingerprint 
comparison in our case is performed in three different stages, each of which 
outputs discriminating scores1 of different magnitudes, together forming a 
multimodal score distribution. The basic functionality of our AFIS algorithm 
will be described in more detail in the following section. 
 
The scores produced by any biometric system can be split according to the 
origin of the samples tested. For the fingerprint modality, the scores can be 
categorized into Same-Source (SS) scores when the mark(s) and print(s) 
originate from the same finger and Different-Source (DS) scores when the 
mark(s) and print(s) originate from two different fingers. The mark is typically 
a fingermark recovered from an object and the print is a rolled fingerprint 
captured as reference in a fingerprint ten-print card. Neumann et al. [4] have 
described a model to assess the evidential value for fingerprint comparison 
with the example given for the case of 12-minutiae configurations (a 
numerical standard followed by many countries). Other approaches based 
on AFIS algorithms have been proposed in [2], where the comparison 
between the mark and the print is not restricted to twelve minutiae, and is 
done automatically by an AFIS algorithm. The benefit of the use of an AFIS 
algorithm relies in its ability to perform large-scale comparisons with huge 
quantities of fingerprints, because the feature vector of the print can be 
extracted and compared automatically. When the number of the minutiae is 
sparse, modern AFIS algorithms are able to extract other type of information 
from the image (minutiae “handedness” [5], orientation field estimation [6] to 
name a few). 
 
The performance of standard generative LR calculation methods generally 
diminishes with the decreasing quantity of scores in the training set used to 
build the models for LR calculation. As will be shown in subsequent sections, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The reason for not using the term “similarity scores” is that some scores not only take into 
account similarity, but the tipicality as well. The aim of the score in either case is 
discrimination. We will not use the score to discriminate, but to compute a LR to assess the 
evidence value. For these reasons we prefer to use the term “discriminating score” wather 
than “similarity score”. 
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even a model providing the best fit to the training data may produce to some 
extent misleading and unreliable LRs. This happens when the tails of SS 
and DS score distributions are rather poorly described, or when the AFIS 
scores are either completely missing or very sparse in the training set (in [7] 
some examples are provided). The main contribution of the approach 
proposed is the division of the score range in several regions and 
calculation of LRs in all regions separately following the rules of probability. 
It should not only be robust to the problem of data sparsity in the tails of the 
distributions, but also handle the problem of the multimodal distribution itself. 
 
Despite the fact that different models are considered in different regions in 
which the score range is divided, the main contribution of the article does 
not focus on a particular model used in each of the regions, because the 
distribution of such scores may vary significantly from one AFIS algorithm to 
the other. Conversely, the contribution relies in handling the multimodal 
score distribution output of the scoring algorithm by combining the value of 
evidence in all regions in a formal way and producing well-calibrated LRs [8, 
9]. This division of the score range and the subsequent combination 
proposed in this paper can be applied to any comparison algorithm 
outputting scores, which present multimodal distribution, not only an AFIS. 

3. The three regions of the AFIS algorithm  

The commercial “off-the-shelf” AFIS algorithms producing discriminative 
scores are primarily developed to support the process of selection of 
candidates for forensic investigation and not aimed for the process of 
description of the evidential value for forensic evaluation [1]. The algorithm 
selected was speed optimized to perform large number of comparisons in 
the shortest time possible. It fully uses the concept of “early-outs”, where in 
our case the database search is split into 3 consecutive stages.  

As shown in figure 1, the scores that result from the AFIS algorithm are 
structured in three regions (R). In Region 1 (R1) the system finds a few 
minutiae in agreement (the algorithm assigns a score of “-1”). In Region 2 
(R2) some similarities are observed, but not enough to warrant a full 
comparison (the algorithm outputs scores in the region of 0 - 300). Sores 
produced in R1 and R2 are referred to as “early outs”. Finally in Region 3 
(R3) the full comparison of all the features is performed (the algorithm 
outputs scores bigger than 300).  
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Figure 1 – Different regions of the scores produced by the AFIS algorithm 

3.1 Probability of observing a score in a particular region 

We can define three events E1, E2, E3 of observing a score in regions R1, 
R2 and R3 respectively. These regions do not overlap and cover the full 
range of possible scores. Therefore the events E1, E2 and E3 are mutually 
exclusive and exhaustive given the three regions.  
 
In a typical AFIS score distribution, the score tends to be bigger as more 
support is given to the SS proposition, and lower as more support is given to 
the DS proposition. Thus, ideally in all regions higher scores should be SS 
and lower scores should be DS. This is illustrated in an example in figure 1, 
where the separation of SS and DS scores in each region is far from perfect 
and should be taken into account by the probabilistic model. 
 
Additionally, it should be taken into account that the distribution of SS and 
DS scores observed in each region may not be uniform, mainly due to the 
early-out scoring process. As a matter of fact, the observation of the score 
in one of the three regions alone has “some” evidential value. In most of the 
cases the majority of the SS scores projects into the R3 region, because a 
comparison showing high degree of similarity tends to be a SS comparison. 
Conversely, the majority of the DS scores projects in the R2 region, 
because a comparison showing low degree of similarity tends to be a DS 
comparison. 
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As we will show later, classical models for multimodal distributions such as 
KDE present many problems related to dataset shift, data sparsity and in 
some cases complete absence of either SS or DS scores from a particular 
region. In this work, we will propose an approach robust to those problems 
for the whole range of scores. The approach is be based on the fact that we 
model the scores independently in all three regions in order to provide well-
calibrated LR values that can be relied on, and combine the outcomes 
following the rules of probability. 

4. LR calculation from AFIS scores 

The question of forensic evaluation of fingermark at source level consists in 
evaluating the likelihood of the two following mutually exclusive 
propositions: 

 
Hp – The fingermark and the fingerprint in the case both originate from the 
same finger 
Hd – The crime-scene fingermark and the fingerprint in the case originate 
from different fingers 
to form a likelihood ratio, following the formula from the Bayesian probability 
theory:  

  (Eq. 1) 

where P(E|Hp) is the conditional probability (or likelihood) of observing the 
evidence (E) under the prosecution proposition (Hp) and the P(E|Hd) is the 
conditional probability (or likelihood) of observing the evidence (E) under the 
defence proposition (Hd). 
 

In case of a system that outputs continuous scores S (e.g. AFIS), 
Equation 1 becomes [4]: 

  (Eq. 2) 

where f(S|Hp) is the probability density function for observing a score (S) 
under the prosecution proposition (Hp) and f(S|Hd) is the probability density 
function for observing a score (S) under the defence proposition (Hd). The 
probability density considers SS scores (fingermarks of a given finger of the 
suspect and the reference print of the same finger of the suspect) for the 
numerator of the LR and DS scores (comparison of the questioned 
fingermark and fingerprints from a subset of the national police database – a 
collection of 10-print cards) for the denominator of the LR. 

LR =
P(E |Hp )
P(E |Hd )

€ 

LR =
f (S |Hp )
f (S |Hd )
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4.1 LR model for score-based biometric systems 

In the forensic literature different strategies have been proposed for 
producing LRs from AFIS scores. In the field of score-based biometric 
recognition [3, 10, 11, 12, 13, 14], the following LR model has been defined: 

   (Eq. 3) 

where for the fingerprint evidence evaluation datasets are defined in the 
following way: 
 
∆(my,px) – a score between the fingermark my found on the crime scene 
and the fingerprint px of the suspect 
∆ – scores obtained from comparing a training set of simulated 
fingermarks of the suspect with the reference fingerprint of the suspect  
∆  – scores obtained from comparing the crime scene fingermark and a 
subset of fingerprints from the population database used in the model (in 
this case a subset of operational 10-print card police database) 
 
Furthermore, we will use below the following notation to refer to the 
parameters of the models:  
 
θ – represents the parameters of the model (e.g. mean, variance) that need 
to be trained 

 – represents a value given to the parameters of the model, obtained from 
the scores of training set  

4.2 Datasets used 

Since it is notoriously difficult to find forensically relevant, sufficiently large 
datasets with the ground truth about the origin of the samples known, we 
decided to use a set of simulated1 [15] 8-minutiae fingermarks from 6 
individuals paired with their corresponding fingerprints. The fingermarks 
were obtained by capturing an image sequence of the finger of each 
individual from an optical live scanner (Smiths Heimann Biometrics ACCO 
1394S live scanner) and splitting the frames captured into 8 minutiae 
configurations.  
 
For modelling the SS scores (numerator in Equation 3) we used the AFIS 
scores of simulated fingermarks and the corresponding reference fingerprint 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Simulated fingermarks in this case refer to series of image captions of a finger moving on a 
glass plate of the fingerprint scanner (the procedure is described in detail in [15]). 
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as training data, captured from the same individual under controlled 
conditions. For modelling the DS scores (denominator in Equation 3) we 
used the mark in the case compared against a 200,000 - fingerprint subset 
of the population database. The values assigned to the parameters of the 
distributions  are obtained from the data summarized in the Table 1.  

Table 1: Same and different source scores. 
Individual ∆  - same source 

scores 

∆  - different source 
scores 

Person 1 8,455 marks 1 print 8,455 marks 200,000 
prints 

Person 2 2,751 marks 1 print 2,751 marks 200,000 
prints 

Person 3 4,666 marks 1 print 4,666 marks 200,000 
prints 

Person 4 2,206 marks 1 print 2,206 marks 200,000 
prints 

Person 5 3,179 marks 1 print 3,179 marks 200,000 
prints 

Person 6 3,758 marks 1 print 3,758 marks 200,000 
prints 

 

For example scores for the Evidence Same Source (ESS) are obtained on a 
“leave-one-out” basis from the SS score distribution (fingermarks of Person 
1 and fingerprint of the Person 1) and scores for the Evidence Different 
Source (EDS) are obtained from the AFIS scores of the fingermarks of 
Person 1 with the fingerprints of Persons 2-6. This process is repeated 
iteratively for each person. In the “leave-one-out” approach we iteratively 
sweep through the set of fingermarks. With every iteration we delegate one 
of the fingermarks to play the role of the crime-scene mark my and maintain 
the remaining fingermarks to form SS and DS score distributions. The 
concept of the LR and the method used will be discussed in length in the 
following sections. 

5. Baseline Model 

The multimodal character of the SS and DS score distributions and the non-
overlap of the three regions suggests the use of flexible, and non-parametric 
score to LR transformation models (if all three regions are modelled 
together). A popular choice in the literature [7] has been the Kernel Density 
Estimation (KDE), which will be used as the baseline reference model, even 
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though over fitting of the score distribution is a known limitation of the KDE3. 
In the KDE baseline experiment we treat all the SS (and DS) scores in all 
three regions together to calculate LR’s from the AFIS scores (model 
illustrated in figure 2). KDE (or any other parametric / non-parametric 
modelling method) will however not be of much use particularly in the R1 
region, since all the scores in this region have the same discrete value S = -
1. This is an excellent example of a limitation of the use of KDE for this kind 
of score distribution. 

 

 
Figure 2 – The Baseline Model4 

5.1 The Dataset Shift in the Different Source (DS) scores5 

Traditional generative approaches like KDE used to treat similar score 
distributions show degraded performance – due to the lack of data, 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3Although the KDE is a non-parametric model, we will use the notation in equation 3, where 
the 

€ 

ˆ θ  in this case are all the training score values and the mean and variance of the kernel 
[16, 17]. 
4 SS and DS scores in this case can be modelled either using generative or discriminative 
approaches [10]. 
5 Even though the Dataset Shift affects the baseline model, is not a characteristic of the 
baseline model.  
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increased distortion in the fingermark, but also due to the dataset shift. The 
dataset shift is in the literature defined as a difference between the training 
and testing6 score distributions [18], in our case the dataset shift is most 
obvious when comparing fingermarks of a particular individual to the 
Different Source fingerprints captured in our laboratory and to the population 
database supplied prints obtained from 10-print cards (see figure 3). The 
dataset shift in our case occurs due to different fingerprint capturing 
methods. Whereas the population database fingerprints are high-resolution 
scans from the 10-print cards (e.g. inked fingerprints are first rolled on a 
paper, scanned and post-processed), the laboratory-captured fingerprints 
used in this article are produced using a high-resolution fingerprint live 
scanner (e.g. direct caption of the fingerprint).  

 

 
Figure 3 – Example of a dataset shift in the DS AFIS scores (Laboratory vs. Police captured 

fingerprints) 

5.2 Data sparsity leading to extreme LR values  

In some cases LR calculation from scores using the KDE for the ESS results 
in the LRs of huge magnitudes (even infinity)7 and for the EDS in the LRs 
strongly supporting the wrong proposition (LR = 2.2891) on the “log” scale as 
shown in Figures 4 and 5. The resulting performance of such model is 
seriously degraded [8], despite its visually excellent fit.  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 Splitting the data available into the training and testing sets are one of the measures of the 
statistical validity commonly used across all biometric modalities for determining problems 
with the data itself or a model representation. 
7 Likelihood Ratio values of such magnitudes don’t have a meaning in forensic evaluation. 
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Figure 4 – KDE producing LR = ∞ for the ESS = 940 

 
Figure 5 – KDE producing to LR = 2.2891 for the EDS = 1080 (very strong support of the 

wrong proposition) 

Figures 4 and 5 indicate that based on the training data, the baseline model 
in our case does not provide reliable LR values due to the poor description 
of the tails of the SS and DS score distributions. An LR value of ∞ in this 
case can be wrongly equated to a categorical decision towards the 
prosecution proposition, something that has to be definitely avoided [19]. On 
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the other hand, LREDS of 2.2891 provides a very strong support to the wrong 
proposition. This effect is amplified by dataset shift that is significant as 
explained above. 

From the above-mentioned we can specify two major requirements. The 
new approach should be robust to the data sparsity (lack of data in general), 
the dataset shift, but most of all – the LRs produced should be well 
calibrated and contained within “reasonable” boundaries. 

6. Multimodal Approach 

In the method proposed we will split the SS and DS score distributions into 
the three regions of interest, since the events of observing an AFIS score in 
different regions are mutually exclusive and exhaustive.  

 
Figure 6 – Multimodal approach 

In each region both the numerator and the denominator of the LR can be 
extended by the proportion of scores observed in a particular region under 
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both propositions  - where i = 1:3 and y = p or d. Transforming LR 
back to ratio of probabilities we obtain following: 

 
(eq. 4)

 A score cannot be observed in multiple regions simultaneously, thus, 
assuming that the score is observed in region Ri, the equation 4 simplifies 
to:  

 
 (eq. 5) 

Where the  is the ratio of probabilities of observing Ri scores given 

that the fingermark and the fingerprint originates from the same finger over 
the probability of observing Ri scores given that the fingermark and the 
fingerprint originates from different fingers.  

6.1 Scores in the Region 3 

 
 (eq. 6)

 
Score distributions in the R3 region for both SS and DS are smooth as 
shown in figure 7. From the histograms of the SS and DS score distributions 
on figure 7 we consider as a reasonable initial assumption that the scores in 
the R3 region are distributed following a Gaussian (Normal) distribution. 
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Figure 7 – Gaussian fit to the R3 region score distributions 

As an alternative to the Gaussian distribution we propose to use a Linear 
Logistic Regression for modelling the scores in this region following the 
work in [20]. We have continuous sets of SS and DS scores (which fit into 
the R3 region) and the bigger the score the better support for the Hp 
proposition. If we expect our solution to be a monotonically rising function, 
we can approach to calculate LRs in a non-parametric way by using for 
example the Pool Adjacent Violators (PAV) algorithm, following the work in 
[21].   

6.2 Scores in the Region 2 

  (eq. 7) 

The DS score distribution in the R2 region appears to be skewed, and the 
SS score distribution seems to be monotonically rising in this region, 
therefore a Gaussian fit is not suitable for modelling the scores in this region 
(as seen in figure 8). A far better fit can be achieved using for example the 
Beta function (figure 9). 

€ 
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P(S |R2,Hp ) × P(R2 |Hp )
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Figure 8 – Gaussian fit to the R2 region score distributions 

 
Figure 9 – Beta fit to the R2 region score distributions 

Alongside the Beta function we will use the linear logistic regression and the 
non-parametric PAV algorithm in the R2 region as alternatives when 
calculating LRs from scores.  
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6.3 Scores in the Region 1  

As mentioned in the beginning, all of the scores observed in the R1 region 
get one particular score (SR1 = -1) assigned by the AFIS algorithm. Equation 
5 for the R1 region will have this form: 

  (eq. 8) 

where  is the probability of observing a -1 score (SR1 = -1) 
amongst all the scores observed in the R1 region under the Hp, an event, 
which is always true and we can write .  The same logic 
applies to the , which is a probability of observing a -1 score (SR1 

= -1) amongst all the scores falling into the R1 region under Hd, an event 
which again is always true and we can write .  

If we apply above-mentioned conditions, eq. 4 further simplifies to a ratio 
of probabilities of observing score in the R1 region under both propositions

. The scores in region R1 possess certain evidential value, despite 

the fact that all of them share the same discrete value.  
 
Let’s assume that very few SS are observed in the R1 region, and that they 
are mostly DS scores. If we observe a score of -1 (in the R1 region), the LR 
should support the defence hypothesis. This happens if . 

Additionally, ignoring the scores in the R1 region because all of them have 
the same value appears to be a waste of the discriminating information 
given by the fact that in R1 there are mostly DS scores. 

7. Robustness to the lack of data 

The problem of assigning probabilities when no observations have been 
made in the training data has been studied for example in [22]. We still have 
to complete our model with a method to assign the following probability ratio 
for each region Ri: 

 

which are probabilities of observing a score in i-th Region under both – 
prosecution and defence propositions. 
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6.4 Example with a simplified binary division 

Assigning P(Ri|Hp) and P(Ri|Hd) to each of the different regions Ri, i=1,2,3; 
needs to consider some robustness about the sparsity of the scores in the 
training set. In order to illustrate this, we start with a simplified example, 
where we have divided the score axis in two regions R1 and R2 – a binary 
division. We consider for illustration the scores under the assumption that Hd 
is true, but this example can be analogously applied to the scores under the 
assumption that Hd is true. In order to assign a probability P(Ri|Hd) that a 
given score will be observed in region Ri, we need some previous 
observations of regions where the scores have fallen – some training 
observations. Those observations are taken from the training scores ∆ , 
with Np scores, in the following way. Let  be a sample of 

random variables, where  represents the region in which the j-th 
different-source training score was observed. In this binary example, the 
possible outcomes of each  are R1 and R2. Then, the outcome of  will 

be the region in which the j-th score in ∆  is observed. Thus, the training 
observations are the particular values of each of those random variables . 

We assume that variables  are identically distributed 
according to a Bernoulli distribution, where the probability that a score is 
observed in Region i is precisely P(Ri|Hd), the parameter of the model. 
Moreover, we assume that the variables are conditionally independent given 
the model. Then, it can be shown that the maximum likelihood rule for the 
probability that a score will fall into Region i is as follows: 

 (eq. 9) 

where Mi is the number of scores in the training set observed in Region i. If 
the training scores under Hd for whatever reason contains zero score 
observations in Region i, i.e. Mi = 0, we get the following: 

 (eq. 10) 

In some cases this might result in a LR = ∞. An analogous derivation results 
in LR = 0 for same-source scores falling in a region where no same-source 
scores have been observed before. 

 
An outcome of LR = 0 or ∞ is very likely to occur if a similarity score, either 
SS or DS, is not observed in one of the regions. The problem arises 
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particularly in the R1 region, where the SS scores are quite rare, but can 
also occur in the R2 or R3 region as well. 

7.1 Bayesian solution 

In order to avoid “zeroes” in either numerator or denominator of the LR and 
to assure a valid numerical input, we propose a Bayesian solution to 
P(Ri|Hd). We start from the above binary example, where a maximum 
likelihood rule was considered. Under the same assumptions, if we instead 
consider that the probability P(Ri|Hd), the parameter of the Bernoulli 
distribution, has a uniform prior distribution (in the [0,1] range), then it can 
be shown that the solution inferred is the predictive distribution, which takes 
the following form: 

  (eq. 11) 

A full derivation is tractable, and can be found in [23] (Equations (6.66) to 
(6.73)). This result is known as the Laplace rule of succession [24]. For 
simplicity the application of this rule on our dataset will be demonstrated on 
R1 region, where all the scores attain a discrete value S = -1. Recall the 
binary example, where in the R1 region we obtained LR = ∞ because there 
were no observed scores in that region in the training data. Suppose a 
number of DS training scores Nd = 20 and that none of these scores are 
observed in the Region 1, thus Mi = 0. Then, according to the previously 
proposed maximum-likelihood rule we would obtain 

 and the LR would be infinite. However, with the 

Bayesian uniform prior on the model’s parameter (Laplace rule of 

succession) we get following , which with 

increasing number of scores will be approaching zero, but will still provide a 
non-zero numerical value. The interpretation of this result is, that 
additionally to the training data, a uniform prior for the model parameters 
forces to consider always at least the observation of one score in each of 
the regions. Therefore, if Hd is true, we have to consider Nd + 2 scores, and 
the scores observed in each region will be at least one. An analogous 
derivation provides equivalent interpretation for the case when Hp is true. 

7.2 Generalization to more than 2 regions 

The problem addressed in this paper requires a generalization with respect 
to the rule of succession for the binary example, because we are dividing 
the score range into more than 2 regions. That means that the variables 
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 will now have more than 2 possible outcomes, and therefore 
their distribution cannot be a Bernoulli distribution. The generalization to 
more than 2 possible outcomes, say Q possible regions, involves the 
assumption that the variables  follow a multinomial distribution. 
Moreover, since there are now Q parameters for this multinomial model, the 
prior uniform distribution of the model parameters will be a Dirichlet 
distribution, particularized for the case of uniform variables. Under these 
conditions, the derivation of the predictive distributions  for each of 
the regions can be found in [25], and therefore generalizes the rule for more 
than 2 regions. That generalization provides the following result for the 
predictive distribution: 

  (eq. 12) 

or, in the case of 3 regions as in the problem we address in this article, we 
have: 

  (eq. 13) 

Again, the analogous derivation produces a similar result for the case where 
Hp is true. 

 
In our model, equation 13 will be used in all three regions to assign all the 
probabilities  and . This is because in cases where there 

are both SS and DS scores present values, the probabilities do not change 
significantly with respect to the maximum likelihood solution. In cases where 
there are zero scores of either SS or DS it will give robustness to the model, 
avoiding results of LR = 0 or LR = ∞. 

 
The motivations for the use of the Laplace rule of succession and its 
generalization are thoroughly justified in [23] and [24]. 

8. Experiment 

We will measure the discrimination and calibration [8, 9] of the two 
approaches – baseline KDE and Multimodal in terms of Detection Error 
Trade-off (DET) curves [26] and Equal Error Rate (EER), Cost-Log-
Likelihood-Ratio (Cllr and Cllrmin) and the Empirical-Cross-Entropy (ECE) [8].  
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The DET curve shows a trade-off between two types of errors – false 
acceptance and false rejection. The Equal Error Rate (EER) is the rate at 
which the False Acceptance Rate (FAR) and False Rejection Rate (FRR) 
are equal if a threshold is used for the biometric system. More details 
regarding the EER can be seen in [26]; Cllr – the measure of calibration and 
Cllrmin its discrimination component are in length described in [21]; and the 
ECE, which is closely related to Cllr, can be summarized as a measure of 
accuracy, as a sum of discriminating power and calibration with an 
information-theoretical interpretation [8, 9]. Cllr and the ECE in this work will 
use the LR values produced by proposed models and provide a quantitative 
measure of calibration.  

 
In the baseline model the Kernel Density Estimate will be fitted to the SS 
and DS score distributions from which the LR’s will be calculated. Since in 
the multimodal approach we treat all regions (R1, R2 and R3) separately, 
we will attempt to find the best performing model for each region. We will 
consider Normal and Beta functions in attempt to represent the score 
distributions parametrically and the linear logistic regression (LinLogReg) 
and the Pool Adjacent Violators (PAV) algorithm for non-parametric LR 
calculation in the way shown in Table 2: 

Table 2. Different methods for LR calculation for the multimodal and baseline approach 
Multi Modal Approach 

Region 1 Region 2 Region 3 
(SS/DS)Bayesian Beta Normal 
(SS/DS) Bayesian Beta PAV 
(SS/DS) Bayesian Beta LinLogReg 
(SS/DS) Bayesian PAV Normal 
(SS/DS) Bayesian PAV PAV 
(SS/DS) Bayesian PAV LinLogReg 
(SS/DS) Bayesian LinLogReg Normal 
(SS/DS) Bayesian LinLogReg PAV 
(SS/DS) Bayesian LinLogReg LinLogReg 

Baseline approach 
KDE baseline for joint regions 

 
Each line in Table 2 describes a different combination of models for each of 
the three regions, where the term (SS/DS)Bayesian is short form notation for 

the  – a Bayesian solution presented earlier, representing the 

ratio of probabilities of observing R1 scores given that the fingermark and 
the fingerprint originates from the suspect (same source) over the 
probability of observing R1 scores given that the fingermark originates form 
another person (different source). In the R1 region probabilities are 
assigned to the events of observing a score following the Laplace rule of 
succession (described earlier). 
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9. Results 

The results will be presented in two sections. In the first we compare Tippett 
plots8 and the discriminating power of the different approaches (by means of 
DET plots and EER values), while in the second we will focus on the 
accuracy of the LR decomposed as discriminating power and calibration 
(Cllr and ECE plots).   

9.1 LRs produced 

In the baseline KDE approach we see a somewhat sub-optimal performance 
of the KDE (Figure 10), as the inverse cumulative density function of the 
LRESS fails to converge in the bottom right region. This results in extremely 
large values of the LR for same-source comparisons. In this region the KDE 
model over-fits the training data, especially in the tail of the SS and DS 
distributions. In the examples earlier we saw LRs reaching undesirably high 
values. Also note, that the log10LR values in the baseline KDE have been 
limited at 30 for displaying purposes. We established earlier that the values 
produced in this approach go far beyond the LR = 1091, which is an extreme 
result that does not have a forensic meaning. It does not reflect a reliable 
assignment for the evidential value and is the result of an artefact of the 
modelling approach. 

 
Figure 10 –  Baseline KDE, Tippett Plot 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 Tippett plots [7] are representations of the inverse cumulative density functions of LRs. 
Each of the curves represents LRs supporting one of the competing propositions. 
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Even though the same quantity of scores was used in both approaches, the 
resulting LR distributions do appear much more refined using the 
multimodal approach (Figure 11).   

 
Figure 11 –Multimodal approach, Tippett plot 

We can observe similar rates of misleading evidence in both cases (figures 
10 and 11), however unlike the multimodal approach, in some cases 
(roughly 3% of the comparisons) the baseline KDE provides unjustifiably 
high LR values. 

9.2 Discrimination 

In this section we will have a look at the discriminating power of the two 
approaches, in the form of Detection Error Trade-off (DET9) curves [26] and 
Equal Error Rates (EER). On the DET curves below (figures 12 – 14) we 
see somewhat sub-optimal performance of the baseline KDE system 
(indicated by the deviation from the linear in the top left).  

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 The DET curve is a 2 dimensional plot of false acceptance and false rejection rates evenly 
handling both error types. The error rates are consecutively plotted on a Gaussian-warped 
scale. Thus, linearity of the DET curves is due to the assumed “normality” of the LRs. The 
closer the curve to the coordinate origin, the better the discrimination capabilities of the 
model. [26] 



Chapter 4 
 

	  96	  

 
Figure 12 – Multimodal models compared to KDE baseline 
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Figure 13 – Multimodal models compared to KDE baseline 
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Figure 14 – Multimodal models compared to baseline KDE model 

 

 

Similarly to the Tippett plots shown earlier, DET plots confirm the deviation 
from the optimal performance of the KDE model (thick solid black curve). 
They also show similar behaviour for the models where R3 scores were 
modelled using PAV (thick dashed green curve). Analysing Tippett plots we 
observed that in some cases the baseline model produces extreme LR 
values reflecting more an artefact of the modelling approach than 
expressing the real evidential value of the findings. In the top left corner of 
the DET curves (figures 12 -14) we clearly see a deviation from otherwise 
linear error rate distribution for both – the baseline KDE (mainly due to the 
over-fitting) and the multimodal approach in which the R3 region scores are 
modelled using the PAV algorithm (which appears not to be the best model 
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choice for almost Gaussian distributed scores). This happens because 
some of the DS evidence scores (roughly 0.1% of the total DS scores) yield 
an extremely big LR value, strongly supporting the wrong proposition. This 
is a highly undesirable effect, which will have consequences in the reliability 
of the LR, which are provided by the KDE model. 

9.3 Calibration 

Sub-optimal performance of the baseline KDE is further reflected in the ECE 
plots (ECE plot explained below). 

 

 

 
Figure 15 – Empirical Cross Entropy – selected multimodal systems compared to the KDE 

baseline 

The red solid curve – ECE represents the accuracy of the LRs (the lower 
the red solid curve, the better the accuracy) and the blue dashed curve 
represents the discrimination of the LRs (the lower the blue dashed curve 
the better the discriminating power of the LR). The red solid minus the blue 
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dashed curve provides calibration of the LRs. The smaller the distance 
between the red solid and blue dashed curves, the better the calibration of 
the system. The lower the blue dashed curve, the better the discriminating 
capabilities of the system. Ideally, both red and blue line should be below 
the black dotted curve, which represents a reference system that 
continuously returns LR = 1. The ECE has information-theoretical 
interpretation and also there is a direct link between the Cllr and its ECE. 
The Cllr on the ECE plot lays on the intersection of the red solid curve and 
“zero” prior log odds and the Cllrmin lays on the intersection of the blue 
dashed curve with the “zero” prior log odds line.  

 
We can observe an undesired behaviour of the baseline KDE model at the 
prior log odds smaller than 10-2, where its performance is even worse than 
that of the reference system which constantly returns LR = 1 (LR = 1 is 
equivalent to I don’t know which of the Hp / Hd to support). The experiments 
and the visualisation tools used seek to present operational limits / 
constraints of any model developed and in this article are illustrated on the 
KDE model. This does not mean that the KDE should not be used in similar 
cases for modelling multimodal distributions; it simply shows the operational 
constraints of this model. It also warns about the low reliability of the LRs 
under certain situations, particularly when the prior odds in the case will be 
low. In other words, it appears to be “safe” to rely on the LR produced by the 
baseline KDE model only for the prior-log-odds bigger than 10-2. Conversely, 
the rest of the multimodal models proposed in this work are reliable in all 
cases, because the calibration of those models is good for all the regions of 
the prior odds (example shown in Figure 15). Also all the multimodal models 
present better accuracy than the reference system outputting LR=1 always.  

 
All of the multimodal systems provide more calibrated LRs than the baseline 
model. The overall results of the experimental section are summarized in 
table 3: 
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Table 3. Discriminating capabilities and calibration of the different approaches 
Multi Modal Approach Performance 

Region 1 Region 2 Region 3 EER Cllrmin Cllr 
 (SS/DS) Beta Gauss 3.62 0.14 0.15 
(SS/DS) Beta PAV 3.69 0.14 0.15 
(SS/DS) Beta LinLogReg 3.84 0.15 0.16 
(SS/DS) PAV Gauss 3.67 0.14 0.15 
(SS/DS) PAV PAV 3.77 0.14 0.15 
(SS/DS) PAV LinLogReg 3.92 0.15 0.16 
(SS/DS) LinLogReg Gauss 3.70 0.14 0.15 
(SS/DS) LinLogReg PAV 3.79 0.14 0.15 
(SS/DS) LinLogReg LinLogReg 3.95 0.15 0.16 

Reference system Performance 
Baseline KDE all regions10 3.87 0.15 0.19 

The best calibrated and best performing system was the multimodal 
approach where the LRs were modelled using the Beta function for the R2 
and Gaussian function in the R3 region. The improvement of this system 
compared to the baseline KDE was approximately 21% for the Cllr and 
6.5% for the EER. The discrimination and calibration of all remaining 
multimodal systems provided similar results, which prove the usefulness of 
the multimodal approach proposed.  

Note, that we are not stating that the best model for any AFIS algorithm is 
given by the combination of Beta and Gaussian models. These models may 
be very different for different algorithms. For example in [2] the AFIS 
algorithm used outputs scores, which are shown to be better modelled by a 
log-normal distribution. However the main contribution of this article is the 
proposed division of the score range in order to model multimodal 
distributions, which can be viewed as general for any biometric system. 
Thus the aim of this experimental section was showing the usefulness and 
robustness of this model based on such a division, especially with respect to 
the other classical approaches, such as KDE. 

10. Discussion 

The main drawback of methods such as KDE when attempting to model the 
whole range of multimodal score distributions is a poor description of the 
tails of the training score distributions, together with a tendency to over-
fitting. In extreme cases using a KDE we observed LRs of enormous 
magnitude supporting the correct proposition (e.g., LREss = 10130, LR = ∞), or 
even supporting the wrong proposition (e.g., LREds = 1091). This provides an 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10 The performance of the baseline KDE method was only possible to measure after 
removing the extreme outliers (LR = infinity) and setting a hard limit at log(LR) = 30. As such 
the reader is required to treat the KDE baseline method results with certain amount of 
moderation in mind. 
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illusion of certainty that transcends reality [18] and leads to a misleading 
interpretation of the evidence. In the ECE plots we observed bad calibration 
of the baseline KDE model in the low prior-odds region, a problem which is 
avoided using any of the multimodal models proposed in this article. This 
issue is hard to deduce from the Tippett plots alone and that is where the 
Cllr and ECE then prove themselves to be valuable validation performance 
evaluation tools.  
 
In the multimodal models proposed here, we have split the SS and DS 
score distributions into three different regions (R1, R2 and R3) depending 
on the evidence score observed. We have modelled the score distributions 
in the R2 region using the PAV, linear logistic regression and the Beta 
function; the scores in the R3 region using the linear logistic regression, 
PAV and Gaussian function; the scores in the R1 region using the ratio of 
probabilities of observing the score under either proposition. In the 
multimodal approach the resulting LRs were structured in much more 
confined intervals. Using the multimodal approach we did not dramatically 
improve the discrimination capabilities of the system in terms of EER (6.5% 
relative improvement for the best performing multimodal system vs. the 
baseline KDE), however we significantly improved the calibration (25% 
relative improvement for the best performing multimodal system vs. the 
baseline KDE). We have shown that using a multimodal approach we can 
produce well-calibrated LRs for the whole range of the prior odds in a case 
(as shown on the ECE plots in figure 13).  
 
In the multimodal approach using different modelling techniques we 
obtained almost identical Cllr and Cllrmin rates. In the best performing 
multimodal system the score distributions were modelled using Beta 
distribution in the R2 region and Gaussian distribution in the R3 region, 
achieving the EER = 3.62%, Cllr = 0.15 and Cllrmin = 0.14. This system will 
be used in the future work, due to its computational simplicity and relative 
ease of implementation. 

11. Conclusion 

In this work we have focused on the model selection for the LR computation 
from AFIS scores presenting multimodal distributions. The criteria 
addressed by the model were mainly focused on the robustness – to the 
lack of data, to the dataset shift and to the over-fitting. The best performing 
model resulting from the experiment (scores modelled using Beta in region 
2 and Gaussian distribution in region 3) was selected for further work. The 
approach proposed takes into account all regions of the multimodal score 
distribution and provides a well-calibrated output. The benefits and 
functionality of the approach were shown on multimodal score distributions 
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produced by an AFIS fingerprint feature extraction and comparison 
algorithm. We think this approach might also be useful in other forensic 
fields, where the automatic approaches used for forensic evaluation at 
source level produce multimodal distributions of distances or scores. The 
models used in each of the regions can be adapted to other score 
distributions if necessary. The idea of splitting the score range in order to 
handle multimodality presented in this work can be generalized and used 
with other biometric systems. 
 
With the model selected, in the future work we will proceed further with the 
definition of additional validation criteria, apply “real” forensic marks to the 
model selected (rather than simulated marks) and reproduce the results for 
5 – 15 minutiae configurations based on the data from real forensic 
casework.  
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Abstract 

Measuring the performance of forensic evaluation methods that compute 
likelihood ratios (LRs) is relevant for both the development and the 
validation of such methods. A framework of performance characteristics 
categorized as primary and secondary is introduced in this study to help 
achieve such development and validation. Ground-truth labelled fingerprint 
data is used to assess the performance of an example likelihood ratio 
method in terms of those performance characteristics. Discrimination, 
calibration, and especially the coherence of this LR method are assessed as 
a function of the quantity and quality of the trace fingerprint data. 
Assessment of the coherence revealed a weakness of the comparison 
algorithm in the computer-assisted likelihood ratio method used. 
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1. Introduction 

Forensic research makes progress in the field of evaluation of forensic 
findings. An increasingly adopted approach [1] uses a logical framework 
based on Bayes’ Theorem to report forensic evidence in terms of likelihood 
ratios [1,2]. Computer-assisted LR methods (also referred to simply as LR 
methods), have been developed to assist the forensic practitioner in his role 
of forensic evaluator [3,4,5,6,7,8,9]. In these methods pattern recognition 
algorithms are often used for the feature extraction (analysis), the feature 
comparison, and statistical models are used for the evaluation of the 
forensic findings. 

In this article the term validation refers to a series of experiments, and the 
application of a set of performance metrics and validation criteria to 
demonstrate validity. This is different from Ref. [10], where the term validity 
was defined as a single metric and equated to accuracy. The specific 
performance characteristics, performance metrics and validation criteria are 
used to describe the performance of methods computing LRs and to assess 
the limits of their validity when used for casework. The LR describes the 
strength of the evidence, and does not imply a decision by itself. Therefore, 
the validation of LRs is not the validation of a decision process, but of a 
description process. We define coherence as a performance characteristic, 
understood as the ability of a LR method to perform better and to maintain 
low rates of misleading evidence as some measured parameters influencing 
quality in the features studied improve, and vice versa. A concrete example 
is provided when studying and assessing the coherence of a forensic 
fingermark evaluation method, based on a comparison algorithm of an AFIS 
(Automated Fingerprint Identification System). When analysing the 
coherence of the method we hope to observe a LR value increasing with the 
intrinsic quantity and quality of the information present in the trace data 
(such as the length of a speech fragment or the number of minutiae in a 
fingermark). 

Forensic service delivery makes progress in the field of quality assurance. 
Initiatives in the European Network of Forensic Science Institutes (ENFSI) 
focus on best practices, method validation and service accreditation [11,12]. 
But because LR methods for forensic evaluation are still very new, the 
question of their validation has not been addressed yet in the context of 
quality assurance. Currently, performance characteristics, performance 
measures, and validation criteria exist to assess analytical forensic methods 
[13] and human-based methods used for forensic evaluation [14,15]. These 
approaches are however not suitable for the validation of LR methods 
developed for forensic evaluation. Such a validation requires specific 
performance characteristics, performance measures and validation criteria 
related to the nature of the LRs and the computation methods involved. 
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Studying the coherence contributes to describing the performance of the LR 
method using datasets in which some measurable parameters influencing 
the strength of the evidence vary. The variation of the length of utterances in 
forensic automatic speaker recognition and the variation of the number of 
minutiae in fingermarks are examples of such parameters. Coherence is a 
highly desirable property of a LR method. 

The remainder of this article is structured as follows. The definition of 
coherence in a set of performance characteristics is presented in Section 2. 
Section 3 introduces the experimental example for assessment of the 
coherence of LRs assigned using computer-assisted methods. The different 
datasets used to measure the performance characteristics are described in 
Section 4, while the relevance of the use of the datasets and their specificity 
is described in Section 5. The performance metrics related to the 
performance characteristics used are introduced in Section 6. Results in 
terms of coherence of the LR method are presented in Section 7, followed 
by general discussion and conclusions in Section 8. 

Throughout this article we frequently use the terms performance 
characteristic – a measurable property (or a set of measurable properties) of 
LRs; and performance metrics – a quantitative description of the 
performance characteristic. These definitions are ours and the terms may 
have different meanings in other related works. 

2. Performance Characteristics 

Several performance characteristics have been defined to assess the 
performance of computer-assisted LR methods developed for forensic 
evaluation. We propose to structure them into primary and secondary 
performance characteristics. Primary performance characteristics directly 
measure desirable properties of the LRs. The secondary performance 
characteristics measure how sensitive primary performance characteristics 
are to factors like the quantity of information in the data, and to the forensic 
casework circumstances, such as degraded quality, different technical and 
temporal conditions related for example to the acquisition of trace and test1 
specimens, representativeness of the data, etc. 

To assess the performance of computer-assisted LR methods, several 
performance characteristics have been defined recently in forensic 
evaluation [16]. A very important one is accuracy, defined as the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 In the fingerprint modality the trace usually refers to the fingermark recovered from the 
crime scene and the test specimen usually refers to the rolled, inked fingerprint of a 
suspected individual. 
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combination of discrimination (discriminating power) and calibration 
[16,17,18].  

• Accuracy is defined as the closeness of agreement between the 
decision – driven by a LR computed by a given method – and the 
ground truth. The LR is accurate if it helps to lead to a decision that is 
correct2. In case of source level inference, the ground truth relates to the 
following pair of propositions: 
 
o Hp: The pair of specimens compared come from the same source 

(SS) 
o Hd: The pair of specimens compared come from different sources 

(DS) 
 
Ground-truth labels are defined as SS (same source) when the LR was 
calculated for specimens originating from the same source, and as DS 
(different source) when the LR was calculated for specimens originating 
from the different sources. If an experimental set of LR values is to be 
evaluated, and the corresponding ground-truth label of each of the LR 
values is known, then a given LR value is evaluated as more accurate if 
it supports the true (known) proposition to a higher degree, and vice-
versa. 

• Discrimination (or discriminating power) is a property of a set of LRs 
that allows distinguishing between the propositions involved. See [16,17] 
for details. 
 

• Calibration is another property of a set of LRs. Perfect calibration of a 
set of LRs means that those LRs can probabilistically be interpreted as 
the evidential value of the comparison result for either proposition in a 
Bayesian evaluation framework. Finding a LR = x will be x times more 
probable under Hp than under Hd (in other words, the LR of the LR is the 
LR [19,20]). Under those conditions the LR is exactly as big or small as 
is warranted by the data. Well-calibrated LRs tend to increase with the 
discrimination of a given method [16]. 

  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 The LR does not imply a decision, but the accuracy measurement is inserted in a decision-
theoretical process as explained in [16,17]. 
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2.2 Example factors influencing the primary performance 
characteristics 

• Quality of the data is a measurable parameter that has no information 
about the proposition, but can predict the performance of that 
comparison. In other words, specimens of high quality to be compared 
in a forensic case predict good performance of that comparison while 
low quality samples predict bad performance of a LR method. Examples 
are the quantity of minutiae in fingerprint comparisons or the signal-to-
noise ratio in speaker recognition. 
 

• Quantity3 or amount of data, e.g. the length of a speech fragment, the 
number of minutiae in a fingermark, etc. 
 

• Representativeness of the data used to train the LR method for the 
data used in operational conditions. The smaller the dataset shift [22] 
between the two, the more representative the training data is for those in 
operational conditions. In the next section we present an experimental 
example to illustrate the measurement of coherence in this framework, 
the datasets used together with the LR method and the performance 
measures used to establish the coherence LRs produced by the model 
tested. 

 
2.3 Secondary performance characteristics 

• Coherence is defined as the ability of the method to yield LRs with 
better performance with an increase of the quantity and quality of the 
information present in the data. 

• Generalization is defined as the property of a given method to maintain 
its performance under dataset shift. LR method 1 generalizes better 
than LR method 2 if, under similar conditions of dataset shift in both 
methods, the performance of method 1 decreases less than the 
performance of method 2. 

Robustness is the ability of the method to maintain performance when 
the quantity or quality of the data decreases. For instance, method 1 is 
more robust to data sparsity than method 2 if, with decreasing amount of 
data, the performance of method 1 decreases less than the performance 
of method 2. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Quality is not an intrinsic property, but depends e.g. on the ability of a system to extract 
features from the specimens, and to compare and evaluate this information. 
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In the next section we present an experimental example to illustrate the 
measurement of coherence, discuss the datasets used in the LR method 
development and the performance measures used to establish the 
coherence of LRs produced by the method. 

3. Measuring Coherence: Experimental example with fingerprint 
LR’s 

The comparison of the minutiae of a fingermark and fingerprint using an 
AFIS comparison algorithm results in a comparison score. The strength of 
evidence of this score can be assessed in terms of a LR. Since the LR 
method in our case consists of modelling the SS and DS score distributions, 
it is referred to as a LR model from here on. A detailed description of the LR 
model used – derived from [6] – is beyond the scope of this article, since the 
aim is to present the validation methodology with the focus on the analysis 
of coherence. 

Recall the set of propositions from the Section 2.1. Without loss of 
generality we can rephrase them to fit our fingerprint example: 

• Hp: The fingermark and fingerprint come from the same source (SS) 
• Hd: The fingermark and fingerprint come from different sources (DS) 

 
Having defined the set of propositions with respect to which the comparison 
scores are evaluated, we proceed to build the LR model [6]: 
 
• Use the minutiae comparison algorithm to compare the fingermarks of a 

suspect with the fingerprint of a suspect to produce a same source 
score distribution (SS) 

• Use the minutiae comparison algorithm to compare the crime scene 
fingermark to the fingerprint of a suspect to produce the evidence score 
(E) 

• Use the minutiae comparison algorithm to compare the crime scene 
fingermark to a database of fingerprints of individuals other than the 
suspect to produce a different source score distribution (DS) 

• Model the SS and DS score distributions using probability density 
functions or a discriminative approach e.g. using logistic regression [18] 
• Compute the strength of the evidence given by the likelihood ratio:  

 

LR =
p(E |Hp )
p(E |Hd )

 (eq. 1) 
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The comparison algorithm applied in this work to generate scores is a 
commercial product Motorola bis 9.1, used as a black-box. The minutiae 
extraction and comparison technology remains outside the scope of this 
work, but we still present some of its functionality. The algorithm used is 
speed-optimized and outputs comparison scores in three separate score 
ranges. The comparison algorithm considers two different comparison 
methods depending on the number of minutiae in the mark: one for 5 to 10 
minutiae configurations and one for configurations of 11 and more minutiae. 
The maximum score is directly proportional to the number of features in 
agreement. We get back to the two methods of the comparison algorithm in 
section 7. 

4. Datasets used 

We use two different datasets – one with simulated fingermarks to obtain 
the values of the parameters of the model and a relatively small one with 
forensic fingermarks to determine validity of the LR model for forensic 
casework. In the following sections we present the two datasets used in 
more detail. We justify their degree of similarity both numerically using the 
Kullback-Leiber (KL) divergence, a measure commonly used in probability 
and information theory [21], and visually by comparing the histograms of 
selected score distributions. 

4.1 Forensic Dataset 

The forensic dataset consists of data from real forensic cases: 58 identified 
fingermarks in 12-minutiae configuration and their corresponding 
fingerprints. The ground-truth labels of the dataset, indicating whether a 
fingermark / fingerprint pair originates from the same source is denoted as 
“ground-truth by proxy” because of the nature of the pairing between 
fingermarks and fingerprints: they have been assigned after examination by 
human examiners, taking into account not only the 12 minutiae, but also 
other minutiae, ridge pattern, etc. The minutiae feature vectors4 of the 
fingermarks have been manually extracted by examiners while the minutiae 
feature vectors of the fingerprints have been automatically extracted using a 
feature extraction algorithm and manually checked by examiners. 

In order to obtain multiple minutiae configurations for the LR method 
validation, the minutiae extracted from the fingermarks have been clustered 
into configurations of 5 to 12 minutiae, according to the method described in 
[23]. Following the clustering procedure we obtain 481 minutiae clusters in a 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 Minutiae feature vectors of a fingermark or fingerprint in our case consist of feature type, 
position, and orientation (parallel to the ridge flow). 
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5-minutiae configuration from the 58 fingermarks with 12 minutiae. For each 
cluster in the marks, a same-source (SS) score is obtained by comparing 
each minutiae cluster from a fingermark with the corresponding reference 
print. Similarly, a different-source (DS) score distribution is obtained by 
comparing a fingermark to a subset of a police fingerprint database. This 
subset consists of roughly 10 million 10-print cards captured in 500 dpi. The 
higher the number of minutiae in each cluster, the lower the number of 
clusters, as can be seen in Table 1. An example of a forensic fingermark is 
presented in Figure 1. 

Table 1: Forensic dataset sizes for SS and DS scores. Note that the number of SS scores is 
the same as the number of clusters for a given minutiae number. 

 SS scores DS scores  
5 minutiae 481 10,283,780 
6 minutiae 432 9,236,160 
7 minutiae 426 9,107,880 
8 minutiae 387 8,274,060 
9 minutiae 342 7,311,960 
10 minutiae 286 6,114,680 
11 minutiae 190 4,062,200 
12 minutiae 58 1,240,040 

 
4.2 Simulated marks Dataset 

Simulated fingermarks were obtained by capturing a video sequence of a 
finger of a known individual moving on a glass plate in different directions in 
order to capture as much distortion as possible. Reference print(s) of the 
same finger of the same individual were recorded on a 10-print card. This 
dataset consists of 200 individuals (100 male and 100 female) times 10 
video sequences (1 per finger). The process of obtaining the simulated 
marks dataset is described in detail in [23]. 

The simulated dataset consists of 25,000 fingermarks of known origin, from 
which we produce the SS and DS score distributions (the number of 
simulated fingermarks differs per configuration5 as shown in Table 2). An 
example of a simulated fingermark on a forensic background is presented in 
Figure 1. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 The difference in the number of simulated fingermarks per configuration is caused by the 
sub-sampling of the original fingerprint captured from a video sequence of a finger moving 
on the glass surface of a fingerprint sensor [21]. 
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Figure 1 - Forensic (left) vs. simulated (right) fingermark. 

There are several advantages in using a simulated fingermarks dataset: 

1.) The contrast and the clarity of the images captured from the video 
sequences are high which allows for automatic minutiae extraction. 

2.) It is relatively easy and cost-efficient to scale up the experiment and 
produce more simulated marks. 

Table 2: Simulated dataset SS and DS dimensions 

 SS scores DS scores  
5 minutiae 16,653 33,306,000 
6 minutiae 25,058 50,116,000 
7 minutiae 24,876 49,752,000 
8 minutiae 25,015 50,030,000 
9 minutiae 25,036 50,072,000 
10 minutiae 24,994 49,988,000 
11 minutiae 24,658 49,316,000 
12 minutiae 24,443 48,886,000 

5. Measuring similarity between the datasets 

Since the two datasets (forensic and simulated) were acquired under 
different conditions, it is appropriate to establish the degree of similarity 
between the distributions of the scores generated by them. We use the KL 
(Kullback-Leiber) divergence to quantitatively express the similarity between 
the DS score distributions of the two datasets. We convert the score 
distributions into normalized histograms representing relative frequencies of 
observations of comparison scores in each of the two datasets – forensic 
(F) and simulated (S) – and compute the KL divergence as follows: 
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KL = F(i) ⋅ ln F(i)
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where the index i in Equation 2 refers to the i-th bin in the histogram. Note 
that if the two distributions F and S are identical the KL divergence is equal 
to zero, and the more similar the histograms are, the smaller is the 
divergence. 

Since the KL divergence is a non-commutative distance between the two 
distributions F and S, we propose to calculate the distance between F and S 
and S and F. The final, symmetric KL divergence is represented as the 
average of those two distances: 
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where index i, as in Equation 2 refers to i-th bin in the histogram. 

The KL divergence of the two datasets, calculated using Equation 3, is 
presented in Table 3. Recall from Equation 2 that the more similar the two 
score distributions are, the closer to zero is the resulting KLsym. The highest 
degree of similarity between the simulated and the forensic dataset is found 
for the fingermarks clustered in 6-minutiae configuration, while the lowest 
degree of similarity is found for the fingermarks in 5-minutiae configuration. 

Table 3: KLsym divergence of the DS comparison scores (simulated and forensic dataset) 

Configuration KLsym 
5 minutiae 0.0336 
6 minutiae 0.00725 
7 minutiae 0.0105 
8 minutiae 0.01915 
9 minutiae 0.01295 
10 minutiae 0.01025 
11 minutiae 0.01375 
12 minutiae 0.0107 

 

For better understanding the KL divergence, the similarity of the two score 
distributions can also be visually assessed in Figures 2 and 3. We compare 
the normalized histograms of the scores for the simulated and the forensic 
datasets, presenting as an example the results for the 5-minutiae 
configurations (lowest degree of similarity KLsym = 0.033) and the 6-minutiae 
configurations (highest degree of similarity KLsym = 0.007). The difference 
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between these most similar and least similar score distributions appears 
negligible in Figures 2 and 3. 

Establishing a degree of similarity between the two datasets acquired under 
different conditions is a very important step in LR method development, 
especially when using probability density functions to produce LRs. We 
conclude that the simulated dataset is a representative approximation of the 
forensic dataset.  

 
Figure 2 - Normalized score distribution for 5-minutiae configurations of forensic versus 
simulated datasets (lowest degree of similarity). 
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Figure 3 - Normalized score distribution for 6-minutiae configurations of forensic versus 
simulated datasets (highest degree of similarity). 

6. Performance metrics used 

In this part we introduce a set of plots and performance measures used to 
evaluate the performance of the model for different minutiae configurations. 
Although alternative measures can be used to illustrate the coherence of the 
LR method, we think that visual representations and measures proposed 
are sufficient. 

6.1 Detection Error Trade-off (DET) plot and Equal Error Rate (EER) 

The DET plot [25] presents the false acceptance rate (FAR) as a function of 
the false rejection rate (FRR). The error rates are plotted on a Gaussian-
warped scale. This makes the DET curves linear when the log(LR) values 
are normally distributed. The closer the curve is to the origin, the better the 
discrimination of the method. The intersection of a DET curve with the 
diagonal of the DET plot marks the Equal Error Rate (EER). The EER is 
used as a performance measure to show the coherent behaviour of the LR 
method. For example, when comparing forensic fingermarks in different 
minutiae configurations the EER should be larger for configurations with 
fewer minutiae (see Figure 4). Even if a DET plot is meant to characterize a 
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system that makes decisions, it is informative about the coherence of the LR 
method when evaluating datasets with different quantities of information. 

 

Figure 4 - DET curves showing the performance of the same LR method with different 
quantities of information. The dashed curve shows worse discrimination in the LRs of 
comparisons for 6-minutiae configurations, while the solid line shows better discrimination in 
the LRs of comparisons for 10-minutiae configurations. The equal error rates are given by the 
intersection of the curves with the diagonal of the plot, and are 6.9% and 2.2%, respectively. 
 

6.2 Tippett plots  

Tippett plots [26] are representations of cumulative distributions of LRs. The 
curves in it represent the proportion of comparisons resulting in a log(LR) 
greater than t versus that value t, when either proposition Hp or Hd is true. In 
a Tippett plot, the rates of misleading evidence for either proposition can be 
observed at the intersection of each of the curves and the vertical at t = 0. 
The log(LR) value zero corresponds to a LR value of 1. Using Tippett plots it 
is relatively easy to distinguish the performance of an LR method when 
presented with different quantities of evidential information. 
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Examples of Tippett plots are shown in Figure 5 for the 5 and 10-minutiae 
configurations. The decrease in misleading evidence due to the 5 additional 
minutiae can clearly be seen. 

 

 
Figure 5 – Tippett plots showing the performance of the same LR method with different 
quantities of information. Dashed lines show less evidential information captured in the LRs 
of comparisons for 5-minutiae configurations, while solid lines show more evidential 
information captured in the LRs of comparisons for 10-minutiae configurations. 
 
 
Using the Tippett plots it is relatively easy to distinguish the quantity of the 
evidential information within the LR values captured by the LR method 
presented with datasets under different conditions. Tippett plots for a LR 
method evaluating the strength of evidence in fingermarks with 5-minutiae 
configuration (dashed line) and 10-minutiae configuration are presented in 
Figure 5. Arrows indicate the change of the Tippett plots when LR method is 
presented with additional information (in this case 10 additional minutiae). 
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6.3 Empirical Cross-Entropy (ECE) plot and the Log likelihood ratio 
cost (Cllr) 
 

The Empirical Cross-Entropy or ECE plot [16,17] is a representation of the 
performance and calibration of the LR values and complements other 
already established methods such as those discussed above [17]. The Cllr is 
a closely related cost function of the log(LR) defined in Ref. [18]. ECE and 
Cllr are both lower when the likelihood ratio correctly supports the ground-
truth proposition. The difference between them lies in the interpretation of 
both measures. The Cllr is interpreted as an average decision cost for all 
prior probabilities. On the other hand, the ECE has an information-
theoretical interpretation as the amount of information lacking compared to 
full knowledge of the ground-truth, on average in a given set of LR values. 
The Cllr is an average over costs and priors, and therefore is not giving the 
performance for a given value of the prior, but for an average of all possible 
priors. An ECE-plot shows the ECE for a certain range of priors [16,17]. It 
can be easily shown that the Cllr is the ECE at prior log-odds of 0 (i.e. a prior 
probability of 0.5). In this sense, the ECE is a more general and 
interpretable performance metric than the Cllr in a forensic context, where no 
decision is to be made by the forensic examiner and where the value of the 
prior changes very much from one case to another. It also appears to be 
more suitable to show the validity of a method over a relevant set of priors 
that are generally unknown. On the other hand, the Cllr is a summary of the 
ECE in a single number, useful for comparing and ranking methods. 

We use the Cllr as a measure of accuracy, consisting of two components: 
discrimination  and calibration  [18]. The solid curve in the ECE 
plot also represents accuracy: the lower it is, the better the accuracy of the 
method. The dashed curve represents the discrimination, and is sometimes 
referred to as “accuracy after PAV”, because it is the ECE after applying the 
Pool Adjacent Violators algorithm (PAV). It is an algorithm that improves the 
calibration of a set of LRs while not affecting their discrimination, see [18] for 
details. The difference between these two curves represents calibration 
losses: the smaller the distance, the better the LR method’s calibration. 

Besides the information-theoretical aspect, the ECE provides the “range of 
application” of the LR method under evaluation. A LR method should 
perform better than a reference method producing LR = 1 for the whole 
range of prior probabilities. In a range of prior probabilities where this is not 
the case, using the LR method would be worse than not using any method 
at all. 

min
llrC

cal
llrC
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Figure 6 presents an example for the sake of illustration, showing the ECE 
plots of the LR method evaluating the fingermarks in 5-minutiae 
configuration in two different settings: uncalibrated and calibrated with PAV. 
Calibrating the LR method not only improves the accuracy of the LR method 
(here measured by the Cllr), it also extends the applicable range of this 
method. The uncalibrated LR method presents an ECE larger than that of 
the reference method for prior log-odds above 0.5, which does not happen 
for the calibrated method. Note that the LRs used for the right hand plot 
were calibrated using the data from the left hand plot, which explains why 
applying PAV using the right hand plot’s own data still reduces the ECE 
somewhat. 

 
Figure 6 - ECE plots for the same LR method (same set of LR values) before and after 
calibration (leave one out cross-validation used for calibration). On the left-hand-side the 
solid curve represents uncalibrated LRs, and the dashed curve gives the ECE after PAV. The 
LRs on the right-hand-side are calibrated using the PAV transform resulting from the data 
used for the left ECE plot. The dramatic lack of calibration is visible in the left plot by the fact 
that above prior-log(odds) = 0.5 the ECE exceeds that of the reference method which always 
gives LR = 1). For that range of prior odds the uncalibrated method performs worse than a 
method that always returns the “I don’t know” answer (i.e., always yielding LR = 1). 
 

7. Results 

We use the same LR method to produce LR values for 5 to 12-minutiae 
configuration comparisons. To describe the performance of the LR method 
for each forensic n-minutiae configuration dataset, the LR method is trained 
with the corresponding n-minutiae simulated fingermark dataset. 

In order to establish the coherence of the LRs produced by the LR method 
selected, we measure the primary performance characteristics: accuracy 
(using Cllr and ECE as a measure), discrimination (using  and ECE-min

llrC
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after-PAV as a measure) and calibration (using  and the difference 
between ECE and ECE-after-PAV as a measure). Recall that the coherence 
is not a primary but a secondary performance measure: it describes the 
variation of the performance of the LR method when varying quality or 
quantity of the information (in our case the number of minutiae). 

The performance as a function of the number of minutiae is presented using 
ECE, Tippett and DET plots. The Cllr, , and EER are determined for all 
minutiae configurations and presented in Table 4. 

Table 4: Relative increase in performance of the LR model when introducing additional 
minutiae 

Configuration DET-
EER 

Discriminating 
power 
Cllrmin 

Accuracy 
Cllr 

5 minutiae 15.69 0.43 0.5 
6 minutiae 6.91 0.26 0.28 
7 minutiae 3.95 0.14 0.16 
8 minutiae 2.42 0.11 0.13 
9 minutiae 1.56 0.063 0.075 
10 minutiae 2.19 0.063 0.074 
11 minutiae 2.73 0.081 0.1 
12 minutiae 1.82 0.057 0.084 

 

The ECE plots in Figure 7 show a decreasing trend (solid curves), which 
corresponds to increased accuracy and discrimination (dashed curves) 
when increasing the number of minutiae from 5 to 10. The values for the 
accuracy and discrimination show the same trend and are summarized in 
Table 4. The sudden increase of these plots and values for the 11-minutiae 
configurations are related to the comparison algorithm, which changes its 
method from 11 minutiae onwards. 

  

cal
llrC

min
llrC
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Figure 7 - ECE plots for LRs generated for forensic marks with 5 to12-minutiae 
configurations. Note the different scaling of the y-axis in the upper and lower row of plots. 

 

The Tippett plots in Figure 8 also show coherence of the method with the 
increasing distance between the curves based on LRs supporting either 
proposition as the number of minutiae increases. In an ideal system the 
rates of misleading evidence would be equal to zero, and both curves in the 
Tippett plots would be maximally separated. The coherence is observed in 
the Tippett plots when with the increasing number of minutiae there is a 
decreasing trend in the rates of misleading evidence and an increase in the 
separation of the curves. The rate of misleading evidence in favour of Hd 
(RMED [24, 26]) decreases from 31% for 5-minutiae configurations to 3.5% 
for 12-minutiae configurations, while the rate of misleading evidence in 
favour of Hp (RMEP [24, 26]) decreases from 1.2% for 5-minutiae 
configurations to 0.06% for 12-minutiae configurations. 
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Figure 8 - Tippett plots for LRs generated for forensic marks with 5 to12-minutiae 
configurations. 

 

The DET curves in Figure 9 capture the discrimination in a lot more detail, 
complementing the Tippett plots. Coherent behaviour of the LR method 
used can be observed in the decreasing values of the EER for an increasing 
number of minutiae. The best performance in terms of EER was achieved 
for the 9-minutiae configuration dataset (EER = 1.6%). The worst 
performance of the LR method was observed for the 5-minutiae 
configuration dataset (EER = 15.7%). Table 4 lists the EER values and 
apart from the overall decreasing trend shows increases for 10 and 11 
minutiae. Not too much meaning can be attached to this because of the 
overlap and irregular behaviour of the DET curves for the highest number of 
minutiae. 
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Figure 9 - DET plots for LRs generated for forensic marks with 5 to12-minutiae 
configurations. 

8. Discussion & Conclusions 

The purpose of this article is to introduce coherence as a secondary 
performance characteristic for LR methods developed for forensic 
evaluation, and to demonstrate its use with an experimental example. In 
Section 2 we have split various performance characteristics into primary and 
secondary ones with examples of factors influencing the primary 
performance characteristics. We then focused on one performance 
characteristic in particular – the coherence – by giving an experimental 
example from the area of forensic fingerprint examination. Coherence has 
been defined as the property of a given method to perform better when the 
quality or quantity of information increases, which in our experimental 
example has been simulated by varying the number of minutiae present in 
fingermarks from 5 to 12. 

The performance of the LR method was evaluated using different 
performance measures (Rates of Misleading Evidence, Cllr and EER) and 
their corresponding graphical representations: Tippett, ECE, and DET plots. 
The LR method used showed coherent behaviour: performance increased 
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with the number of minutiae increasing from 5 to 10. It also showed 
somewhat incoherent behaviour and a small decrease in performance when 
moving from 10 to 11 minutiae. 

This incoherent feature of the comparison algorithm’s performance is 
believed to be caused by a switch of the method it uses when more than 10 
minutiae are present. The experimental example therefore reveals the 
importance of coherence in order to detect points of improvement in 
computer-assisted LR methods. 
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1. Abstract 

When visible on a fingermark, the general pattern maintains its importance 
in the fingerprint examination procedure, since the difference between the 
general pattern of a fingermark and a fingerprint is sufficient for exclusion. In 
the current work, the importance of the general pattern is extended by 
evaluating the strength of evidence of a match given corresponding general 
pattern.  In current practice (due to the lack of statistical support for the 
general pattern evidence) the fingerprint examiners assign personal 
probabilities to the general pattern evidence based on their knowledge and 
experience, while in this work the probabilities are calculated using a 
Bayesian Network, which is fed by empirical data.  
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2. Introduction 

In this article, we aim to assign a value to the correspondence of the general 
patterns (GP) in terms of descriptive and inferential statistics. We have 
developed two Bayesian Networks (BN) – one at the level of finger and one 
at the level of person – to assist the fingerprint examiners in statistical 
quantification of probabilities they assign to the general pattern evidence. 
The main motivation for using BNs is their ability to model the dependencies 
between different types of evidence in a logically correct framework.  

When a fingerprint examiner compares a fingermark retrieved from a crime-
scene to a reference fingerprint of a suspected person, (s)he exploits all the 
available information to assign its evidential value: properties of the ridge 
flow (level 1), of the minutiae (level 2) and of the ridges themselves (level 3). 
Recently tools producing Likelihood Ratios (LR) have been developed, 
allowing the fingerprint examiners to quantify the evidential value of spatial 
configurations of minutiae [Ne11, ECM07, AJR13, NCJ12, FSS07]. 
According to [Ne11], the evidential value assigned to the spatial 
configuration of the minutiae present in a fingermark can be expressed 
using a likelihood ratio (LR) and a set of propositions at the level of the 
finger1: 

Hp: the fingermark was left by a specific finger  
Hd: the fingermark was left by an unknown finger 

or at the level of the person: 

Hp: the fingermark was made by the person who made the set of 
fingerprints 
Hd: the fingermark was made by some unknown person 

In absence of realistic data, the numerator of the LR has been reduced by a 
factor of 10 in [Ne11] when the propositions are considered at the level of 
the person, to account for the uncertainty in relation to which of the ten 
fingers of a donor the fingermark originates. The aim of this article is to 
complement these approaches, using real forensic fingermark and 
fingerprint data as well as a BN to account for the probability from which of 
the 10 fingers of a donor the fingermarks retrieved from crime-scene 
originated and to quantify the evidential value of the shape of the ridge flow 
classified as a GP.  

In the following sections of this article we will provide firstly an insight in the 
datasets used for constructing the networks, and secondly present each of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The factfinders phrase their questions at the level of the person, which is then investigated 
at the level of the finger. 
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the BNs proposed paired with a case example. Finally we will assign the 
evidential value in form of likelihood ratios. Such likelihood ratios can be 
combined with the evidential value assigned to other corresponding features 
of the fingermark and fingerprint, for example the minutiae configuration. 

3. Data used and descriptive statistics 

3.1 Data labeling  

By convention, the fingers are numbered from 1 to 10, starting from the right 
thumb (labelled finger 1) and ending to the left little finger (labelled finger 
10). Numerous systems exist to assign GP to the shape of the ridge flow. In 
this work, the data are labelled according to the GP classification codes of 
the ANSI/NIST-ITL 1-2000 format [NIST11]: plain arch, tented arch, left loop, 
right loop and whorl. A 6th class labelled “unknown” merges the ANSI-NIST 
codes “unable to print” and “unable to classify”.  

   
Plain Arch Ulnar Loop Whorl 

   
Tented Arch Radial Loop Unable to 

Classify 
 

Figure 1 – General pattern classification 
 

In 1975, A. J. Brooks conducted a study on the fingermarks identified in 
Chicago during the period from 1969 to 1973, to determine from which of 
the 10 fingers of a donor the fingermarks retrieved from crime-scenes 
originated [Br75]. Since this time, too little attention has been paid to the 
study of datasets of identified fingermarks [RJM12]. More attention has 
been dedicated recently to the study of the distribution of the GP on the 10 
fingers [Sw05, NBMM09, GARG08]. These studies use various GP 
classification codes and only the results presented in [GARG08] classify the 
shape of the ridge flows, with codes similar enough to the ANSI-NIST codes 
to be compared to the results of the present study. 

Due to their age, rarity, diversity or origin, we have replicated these studies 
independently in 2012 in our country using the most recent operational data, 
ensuring the applicability of the results in this country and at the present 
time. 
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3.2 Identified fingermarks – finger number 

A total of 11555 identified fingermarks 2  from the years 2010 (4032 
identifications) and 2011 (7523 identifications) was used to determine from 
which of the 10 fingers of a donor the fingermarks retrieved from crime-
scenes originate. These data reflect the operational activity as processed by 
the national police force in the field of fingermark examination in these two 
years. For each identified fingermark, the finger number, the GP and the 
gender of the donor of the (corresponding) reference fingerprint general 
were provided. The results summarizing the distribution of fingers identified 
in the police investigations are presented in the table 1. 

Table 1 – Proportions of identified fingermarks (Brooks vs. Police identified fingermarks) 

Finger 
Number 

Brooks Identified 
Fingermarks 

Police Identified 
Fingermarks 

1 15.06 15.59 
2 11.69 16.97 
3 13.57 10.64 
4 10 6.9 
5 2.22 2.1 
6 14.05 15.26 
7 10.17 9.62 
8 13.2 11.67 
9 7.81 8.07 

10 2.22 3.18 
 
The proportions of identified fingermarks will be integrated into the 
“FingerNumber” node of both BNs (described in the following section). The 
results have also been compared to the results of the Brooks study.  

Despite the 35 years separating the two studies, the diversity of the 
populations studied and the fact that the quantity of data of the present 
study supersedes almost 4 times the dataset of Brooks, we observe similar 
results. The descriptive statistics presented indicate that differences smaller 
than 2% are observed between the two datasets. Our interpretation is that 
inferences made using these results are valid on the long term and are not 
sensitive to the diversity of the populations. We also observe fact that both 
hands are similarly represented in the criminal activity (47% left hand vs. 
53% right hand), despite the fact that the majority of the human population 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 We are aware that no ground truth exists for a decision regarding identification of a crime-
scene fingermark and a corresponding reference fingerprint of a suspect. Due to the fact that 
12-minutiae numerical standard is addopted in many countries (including ours) we consider 
the identifications carried out by fingerprint examiners based on this standard as an 
acceptable ground truth by proxy. 
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is right-handed. 

 D
is

tr
ib

ut
io

n 
of

 id
en

tif
ie

d 
fin

ge
rs

 in
 %

 

 
Brooks identifications n = 2969                   Police Identifications n = 
11555 

Figure 2 – Results of the comparison of the results of the present study with the results of 
the Brooks study [Br75] 

3.3 Reference fingerprints – General pattern 

The dataset consists of inked, digitized and encoded 10-print cards of the 
police fingerprint database. The GP of these prints has been assigned 
manually by fingerprint examiners. For each print, additional information 
regarding the finger number and the gender of the donor is available. 10-
print cards from 312.484 individuals have been randomly selected from the 
original dataset to study the distribution of the GP over the 10 fingers. 
72.5% of the data originates from male donors and 26.8% from female 
donors. For 0.7% of the data the gender was unknown. 

Table 2 – GP distribution (%) on different fingers of the right hand (females and males) 

The information related to the GP, to the finger number, and to the gender 
have been exploited in combination in order to study the distribution of the 
GP on the 10 fingers. The results for the female and male donors are 
presented in the Tables 2 and 3. They will be integrated into the node 
variable “GeneralPattern” of the two BNs described in the next section.  

0	  
5	  
10	  
15	  
20	  

1	   3	   5	   7	   9	  
Finger	  number	  

40	  

45	  

50	  

55	  

Right	   Left	  
Hand	  

Finger No. 1 2 3 4 5 
GP \ Gender M F M F M F M F M F 
Plain arch 2.2 4.1 5.3 7.8 3.7 5 1 1.7 0.6 1.3 
Tented arch 1.1 1.5 11.8 10.3 7.3 6.6 3 3.1 3 3.6 
Right Loop 47.3 54.9 29.6 36.6 65.6 72.5 43.9 53.1 77.6 83.1 
Left Loop 0.4 0.4 16.4 12 1.4 0.8 1 0.9 0.2 0.2 
Whorl 48.7 39 36.3 32.9 21.5 14.9 50.8 41.1 18 11.4 
Unknown 0.3 0.2 0.7 0.4 0.5 0.3 0.4 0.3 0.5 0.4 
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Table 3 – GP distribution (%) on different fingers of the left hand (females and males) 

In the Figure 3 the results are compared to the results of the Gutierrez 
[GARG08] study. As the entries in the Tables 2 and 3 indicate minor 
differences of the order of 2% between the relative frequencies of GPs for 
females and males. The prints labelled as Plain and Tented Arch of our 
study have been merged into one class labelled Arch to fit the classification 
codes used in [GARG08]. 
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Figure 3 – Distribution of the GPs on the 10 fingers (Police vs Gutierrez datasets) 

 
Despite the fact that 312.484 individuals were used in our study and only 
200 individuals in the study of Gutierrez, we observe similar proportions of 
right and left loops distributed over different fingers. However, proportions of 
arches and whorls appears to be quite different for some fingers. 
Unfortunately, the difference in encoding standards used by Nithin [Sw05] 
and Swofford [NBMM09] prevent a direct comparison. 

Finger No. 6 7 8 9 10 
GP \ Gender M F M F M F M F M F 
Plain arch 3.9 6.5 5.3 8.1 4.6 7.4 1.3 2.3 0.8 1.9 
Tented arch 1.7 2 12 11.5 7.7 8.3 3.1 3.7 3.1 4.1 
Right Loop 0.5 0.9 14.3 15.8 1.1 1.5 0.4 0.8 0.1 0.2 
Left Loop 55.3 55 34.1 32.9 64.8 64.2 55.2 57.5 82 84.3 
Whorl 38.3 35.4 33.8 31.3 21.4 18.3 39.6 35.4 13.5 11.2 
Unknown 0.3 0.2 0.6 0.4 0.5 0.3 0.4 0.3 0.5 0.5 
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4. Inferential statistics using Bayesian Networks 

From practice and experience the fingerprint examiners acquire an implicit 
knowledge of the distribution of the GP over the 10 fingers and of the 
relative contribution of the 10 fingers to the fingermarks retrieved from crime 
scenes. They make use of this knowledge when assigning evidential value 
to the correspondences and differences observed between a fingermark 
and a fingerprint. 

Two BNs integrating the descriptive statistics described in Section 2 have 
been built to quantify the evidential value resulting from the combination of 
the GP and the relative contribution of the 10 fingers. The utility of these 
networks is to assist the fingerprint examiners to refine the numerator of the 
LR when they consider propositions at the finger and person level. In other 
words, the use of BNs allows the examiners to support their personal 
probabilities with statistical data. Concretely, we propose two BNs to assist 
the examiner, the first one for the finger level (3.1) and the second one for 
the person level (3.2). The BN models are „built for purpose“ and their 
implicit validation and justification is subject to further research. 

4.1 Finger level (Distinctivness of the GP) 

At the finger level the BN informs about the rarity of a GP observed on each 
finger number of a random person (based on the population).  The node 
“Finger Number” contains the distribution from which of the 10 fingers of a 
random donor the fingermark originated; the node “Hand” encapsulates the 
proportion of right / left handed in the identified fingermarks; the node 
general “General Pattern” contains the distribution of the GP over the 10 
fingers and the node “Gender” contains the proportions of male / female / 
unknown donors of identified fingermarks. We express the dependency of 
the GP node on the finger number and the gender3 by P(GP|FN,G). 

 
Figure 4 – the finger level BN 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 The gender dependency has been made explicit, despite the minor differences in the GP 
distribution between the male and female population (see Identified Fingermarks section of 
this article). 



   Chapter 6 
 

	  140	  

Case example 

A fingermark containing a GP labelled as a whorl 
is recovered from the surface of a ceramic mug. 
The BN calculates the probability (posterior odds) 
for this whorl to have been left by each finger of a 
randomly selected donor. In this case the BN 
indicates that this mark has the highest 
probability to have been left by the finger number 
1 and the lowest probability to have been left by 
the finger number 5. This result is useful for 2 purposes. Firstly, it allows for 
searching the database per finger number, starting from the most common 
finger. Secondly, the posterior odds indicate that the evidential value 
expected strongly depends on which finger of a donor it can be paired to. 

The propositions to be tested are: the mark originates from donor’s finger 1 
vs. the mark originates from any other finger  (2-10) of the same donor. The 
posterior odds provided by the BN allow to calculate the posterior odds ratio 
P (F1|GP) / P (F2~10|GP). The uninformed prior odds of 1/10 in absence of 
data are updated using the descriptive statistics of the Table 4. The 
evidential value for a whorl observed on a fingermark paired to the finger 
number 1 (vs. on any other finger) as calculated in the table 4 is 1.46. In 
other words, it is 1.46 times more likely to observe a whorl if it originates 
from the finger number 1 than if it originates from any other finger number of 
a donor randomly selected. The calculation for the highest and lowest 
evidential value has been added for illustration purposes. 

Table 4 – LR values for the most rare, case example and most common GP 

Evidence Evidential 
Value 

Prior Odds 
(in %) 

Posterior 
Odds (in %) 

LR 

Whorl on Finger 
1 

Example 
given 

15.59/84.51 21.26/78.74 1.46 

Right loop on 
Finger 10 

Highest 3.18/96.82 0.02/99.98 0.000609 

Right loop on 
Finger 5 

Lowest 2.10/97.90 6.22/93.78 3.09 

   

 
P(F1 |GP)
P(F2−10 |GP)

= LR× P(F1)
P(F2−10 )

 21.26
78.74

= LR×15.89
84.51

 

Equation 1 – LR calculation from the prior and posterior odds 
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4.2 Person level 

A few extra nodes need to be introduced in the previous BN to address the 
propositions at the person level. The node “Suspect Print GPs” contains the 
classification code of the 10 GPs for the donor of the 10-print card paired to 
the fingermark (GP code).  The node “Source of the Mark” contains the pair 
of alternative propositions to be tested: the mark originates from the donor 
of the 10-print card vs. the mark originates from a donor randomly selected. 
For a practical reason the prior odds ratio for these 2 propositions is set to 
½ (prior odds = 1). The choice for the prior of 1 is a conscious choice to 
force the posterior odds to be equal to LR. We do not mean to imply that 
equal prior odds are a good choice for any other purpose than extracting the 
LR from the BN. 

The probabilities of the GP of the mark (“Mark General Pattern” node) 
directly depend on the finger number, the gender and GP code of the donor 
of the 10-print card. In the case of correspondence between the GP code 
and finger number of the fingermark and fingerprint of the donor of the 10-
print card, the numerator of the likelihood ratio is equal to 1; it is equal to 0 
in the case of a difference. For the denominator of the LR, the probability of 
correspondence between the GP code and finger number of the fingermark 
and the fingerprint of another person is determined by the data of the Tables 
1, 2 and 3. 

 
Figure 5 – the person level BN 

Case example 

At the person level we use the same fingermark as in the previous example: 
a whorl found on a ceramic mug on the crime-scene. Based on eyewitness 
testimony the police arrest a person, from which a 10-print card is produced. 
The Table 5 summarizes the GP classification codes of this donor. 
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Table 5 – Description of the general pattern code the donor of the 10-print card 
(A – Arch, W – Whorl, R – Right loop, L – Left loop) 

Finger 
Number 1 2 3 4 5 6 7 8 9 10 

General 
Pattern R A R W R L L W L L 

  
In the BN shown in Figure 5, the GP of the fingermark is given in the node 
“Mark General Pattern” and the GP code of the donor is given in the node 
“Suspect Print GPs”. The probability that the fingermark originates from the 
donor of the GP code given the finger number and the correspondence of 
the GP divided by the probability that the fingermark originates from another 
person given the same evidence: P(Hp|GP) / P(Hd|GP) is calculated in the 
node “Source of the Mark”. This posterior odds ratio is equivalent to the LR , 
since the prior odds for the 2 propositions have been set to 0.5 (odds 1/1). 

The BN at the level of the person uses the general pattern code of the donor 
(distribution of the GPs over all 10 fingers) together with the whorl found on 
the crime-scene information to calculate the LR at the person level directly. 
This information is quantified for the two sets of propositions in the node 
“Source of the Mark”: P(Hp|GP) = 30.73 and P(Hd|GP) = 69.27 (as shown in 
Figure 5). The value calculated as presented in Table 6 is 0.44 
(30.73/69.27). It means that it is slightly less probable to observe a whorl if it 
originates from the donor of the 10-print card than if originates from a donor 
randomly selected. For illustration purposes, the LR has also been 
calculated for the other available GPs: arch, right loop and left loop. 

Table 6 – LR values for the most rare, case example and most common GP 

 
Tables 2 and 3 show that the arch is the most rare classification code for a 
GP. Similarly, as in the previous example, we can attempt to evaluate the 
smallest and largest LR. Unlike in previous example however, we now 
operate at the level of the person, hence the LR depends not only on the 
GP found on the crime scene but also on distribution of the GPs in the 
population. It is directly dependent on the general pattern of the suspect as 
well. Given the general patterns of the suspect in this case the smallest LR 
corresponds to the whorl found on the crime-scene and the biggest LR 
corresponds to the arch. These LR values remain modest, but the strategy 

Data from the BN P(GP|Hp) 
in %  

P(GP|Hd)   
in % 

LR 

Arch (given suspects GP) 80.73 19.27 4.19 
Whorl given suspects GP (case 
example) 

30.73 69.27 0.44 

Right loop (given suspects GP) 51.43 48.57 1.06 
Left Loop (given suspects GP) 57.64 42.36 1.36 
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consists in measuring and combining the evidential value of each 
characteristic available in the fingermark that can be paired with a reference 
fingerprint. Clearly, the LRs obtained for the first level information are 
calculated with the intention to combine them with the LRs calculated for the 
second level of information, based on the spatial arrangement of the 
minutiae. 

5. Conclusions 

When no prior information is available it is reasonable to assume the 
refinement of 1/10 when moving from the finger to person level as proposed 
by Neumann et al [Ne11].  

The two BNs developed in this article combine the statistical information 
regarding the GP distribution over different fingers contained within the 
fingermarks (police identifications) and fingerprints (police database). The 
main motivation for using the BNs is their ability to model the dependencies 
between different types of evidence. They also provide a practical solution 
when quantifying the rarity of the GP found on the crime-scene fingermark 
and a finger of a random donor (level of the finger) or when quantifying the 
weight of the GP evidence found on the crime-scene fingermark and GP 
code of a donor (level of the person).  

The choice between the two BNs proposed depends on the needs of the 
fingerprint examiner and/or operational conditions of the systems used to 
assign the evidential value of the second level details. Our aim in both 
cases was to quantify the evidential value contained in the first level detail 
fingermark/fingerprint comparison in meaningful LR values, which could be 
further combined with LR values obtained from the second level detail 
fingerprint evidence evaluation process or any other case related evidence. 

  



   Chapter 6 
 

	  144	  

6. Future work  

Future work will include validation of the BN models developed in terms of 
enhanced application scenarios, sensitivity analysis and further 
improvement of the BN to support any finger combination. Also, further 
investigation is needed when utilizing the tools developed in combination 
with other fingerprint/case related evidence. 
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Introduction 

Validation of non-standard methods is described in the ISO/IEC 17025 
standard in section 5.4.4. “When it is necessary to use methods not covered 
by standard methods, these shall be subject to agreement with the 
customer and shall include a clear specification of the customer's 
requirements and the purpose of the test and/or calibration. The method 
developed shall have been validated appropriately before use.” In the 
section 5.4.4 the ISO standard also lists the information recommended: 

a) appropriate identification; 
b) scope; 
c) description of the type of item to be tested or calibrated; 
d) parameters or quantities and ranges to be determined; 
e) apparatus and equipment, including technical performance requirements; 
f) reference standards and reference materials required; 
g) environmental conditions required and any stabilization period needed; 
h) description of the procedure, including 

- affixing of identification marks, handling, transporting, storing and 
preparation of items, 
- checks to be made before the work is started, 
- checks that the equipment is working properly and, where required, 
calibration and adjustment of the equipment before each use, 
- the method of recording the observations and results, 
- any safety measures to be observed; 

i) criteria and/or requirements for approval/rejection; 
j) data to be recorded and method of analysis and presentation; 
k) the uncertainty or the procedure for estimating uncertainty. 

Prior to starting the validation of a LR method, a validation plan should be 
drawn by a forensic examiner. It is mandatory for the reader to keep in mind, 
that the ISO/IEC 17025 standard was predominantly developed for the 
validation of analytical methods, therefore not all of the recommended 
information is applicable to the validation of LR methods. Especially the 
points e), f), g), h), j) and k) will be rather challenging to defend in the 
interpretation of forensic evidence. In compliance with the remaining 
recommendations from the ISO/IEC 17025 standard the validation plan 
should contain (but is not limited to) the following: 
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• Identification of LR method – point a) 
• The intended use – point b) 
• The performance characteristics – point d) 
• The performance metrics – point d) 
• The validation criteria – point i) 
• The scope of the validation (Range of application of the LR method) 

– point b) 
• Validation time span (applicable in cases in which the datasets used 

in the LR method development/validation stage are envisaged to get 
obsolete) 

1. Intended use 

This validation report presents the empirical validation example of the 
multimodal LR method, developed for use in forensic fingerprint evidence 
evaluation as presented in chapter 4. It follows the validation protocol 
drafted in chapter 1 of this thesis, addressing the validation requirements 
specified. Validation requirements will be specified and addressed using the 
validation criteria, performance metrics, graphical representations, datasets 
used, experiment description and validation decision as presented in 
chapter 1. Where applicable, a reference to the chapter / section in the 
thesis dedicated to the specific requirement will be provided. The report will 
be followed by a summary section, in which a set of recommendations and 
a final validation verdict will be presented.  

2. Method Description 

The validation criteria of the LR method developed in chapter 4 were set as 
a comparison with the “baseline”. Both, the Kernel Density Estimate (KDE) 
baseline LR method and the multimodal LR method proposed in chapter 4 
use the discriminating scores produced by AFIS comparison algorithm for 
the evidence Same Source (SS) and for the evidence Different Source (DS).  

Two different datasets have been used:  

• Simulated dataset (see chapter 4 for more details) 
• Forensic dataset (see chapter 5 for more details) 

 
Main motivation for the use of simulated data was the fact that the 
fingermarks were available in large quantities and the source of origin was 
a-priori known due to the fact that the simulated fingermarks we re obtained 
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in controlled conditions. Due to the fact that the quantity of the simulated 
fingermarks supersedes the quantity of forensic fingermarks by a factor of 
100 (there is 100times more simulated data than the real forensic), the 
simulated data was used in the training stage while the real forensic data 
was used in the validation stage.  

Baseline KDE LR method featured several undesirable aspects (see 
chapter 4 for more details): 

• Over-fit on the training dataset 
• Not robust to the previously unseen data 
• Not robust to the dataset shift 
• Produced unconstrained LR values of irrational magnitudes (LR = 

infinity) 
 

The multimodal LR method presented solutions to the above-mentioned 
issues while maintaining (and improving on) the performance of the baseline 
KDE method.  

3. Validation Matrix 

Validation matrix including all different aspects of the validation report is 
presented in table 1 below: 

Table 1: Aspects of empirical validation 

Performance 
Characteristic  

Performa
nce 
Metric 

Graphical 
Represent
ation 

Validation 
criteria 

Experi
ment Data 

Analytical 
result 

Validation 
Decision 

Accuracy Cllr, EER 
ECE plot  
DET plot 

According to 
the definition 

Descripti
on 

Data 
used  

+/- [%] 
compared to 
the baseline 

Pass / fail 
 

Discriminating 
power Cllrmin ECEmin plot 

According to 
the definition 

Descripti
on 

Data 
used 

+/- [%] 
compared to 
the baseline Pass / fail 

Calibration Cllrcal Tippett plot 
According to 
the definition 

Descripti
on 

Data 
used 

+/- [%] 
compared to 
the baseline Pass / fail 

Robustness 
Cllr, EER 
LR range 

ECE plot 
DET plot 
Tippett plot 

According to 
the definition 

Descripti
on 

Data 
used 

+/- [%] 
compared to 
the baseline Pass / fail 

Coherence 
 Cllr, EER 

ECE plot 
DET plot 
Tippett plot 

According to 
the definition 

Descripti
on 

Data 
used 

+/- [%] 
compared to 
the baseline Pass / fail 

Generalization Cllr, EER 
ECE plot 
DET plot 

According to 
the definition 

Descripti
on 

Data 
used 

+/- [%] 
compared to 
the baseline Pass / fail 
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It is to be understood, that due to the definition of the likelihood ratio as 
being the result of a probabilistic inference and not a measurement, no 
quantitative ground truth exist for the likelihood ratio because of the 
“Bayesian interpretation of probabilities as a degree of belief” [Lindley 
1976]. Therefore it is not possible to establish unique relation between 
a pair of samples and a likelihood ratio value. 

For this reason we omit the precision from the performance characteristics 
all together and re-instantiate the term accuracy using a new definition (see 
chapter 1 for more details). 

4. Performance characteristics and the metrics associated 

The performance characteristics have been structured in the primary and 
secondary ones, presented in table 2. The primary characteristics of the LR 
method under evaluation are related directly to performance metrics and 
focus on desirable properties (e.g. goodness of a set of LR values, in which 
we are assessing whether a set of LR values is good or bad, adequate or 
non-adequate, whether it has desirable properties or not). The secondary 
characteristics describe how the primary metrics behave in different 
situations, in some cases simulating the typical casework conditions (e.g., 
degraded quality of samples, varying conditions in training data and 
evidence, etc.). 

Table 2 – Performance characteristics definitions 

Performance 
Characteristic  

Performance 
Metric Definition 

Accuracy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cllr, EER 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Closeness of agreement between a LR computed by 
a given method and the ground truth status of the 
proposition in a decision-theoretical framework. The 
LR is accurate if it helps to lead to a decision that is 
correct according to the ground truth of the 
propositions. 

In case of source level inference, the ground truth 
relates to the following pair of propositions: 

• Hp: the pair of samples tested originate from 
the same source (SS) 

• Hd: the pair of samples tested originate from 
different sources (DS) 

If an experimental set of LR values is to be evaluated, 
and the corresponding ground-truth labels of each of 
the LR values are known, then a given LR value is 
evaluated as more accurate if it supports the true 
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Performance 
Characteristic  

Performance 
Metric Definition 

  (known) proposition to a higher degree, and vice-
versa 

Discriminating 
power 
 
 

Cllrmin 

 

 

Performance property representing the capability of a 
given method to distinguish amongst forensic 
comparisons under each of the propositions involved 

Calibration 
 
 
 
 
 
 
 

Cllrcal 

 

 

 

 

 

 

 

In probabilistic terms can be defined as the property 
of a set of LRs. Perfect calibration of a set of LR’s 
means that those LR’s can probabilistically be 
interpreted as the evidential value of the comparison 
result for either proposition. Finding an LR=x will be x 
times more probable under Hp than under proposition 
Hd. Under those conditions the LR is exactly as big or 
small as is warranted by the data. The strength of 
evidence of well-calibrated LRs tends to increase with 
the discrimination power for a given method  

Secondary 
Performance 
Characteristics 

Performance 
Metric 
 

Definition 
 
 

Robustness 
 
 
 
 
 
 
 

Cllr, EER 
 
 
 
 
 
 
 

Stability of the performance measure to the variation 
of a given factors, and as the improvement of the 
performance measure with the increase of that factor. 
For instance, method A is more robust to data 
sparsity than method B if, as the data gets sparser, 
the performance of method A degrades less than the 
performance of method B.  

Coherence 
 
 
 
 

Cllr, EER 
 
 
 
 

Focuses on the variation of some measurable 
parameters1 in the features2 studied, perceived as 
influencing the strength of evidence, like the quantity 
of minutiae in the fingerprint field or the signal to noise 
ratio in speaker recognition field. 

Generalization 
 
 
 
 
 
 

Cllr, EER 
 
 
 
 
 
 

Property of a given method to maintain its 
performance under dataset shift. “A dataset shift 
occurs when the joint distributions of inputs and 
outputs differs between the training data (used to 
build the LR methods) and the testing data(previously 
unseen)” [18] used to compute LRs in operational 
conditions.  

 

  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Parameter can be seen as a measurable value of the degradation of the extracted features 
due to forensic conditions (signal to noise ratio, distortion, clarity). LR method can be the 
robust to these parameters. 
2 Feature is to be understood as a carrier of information extracted from raw data.Coherence 
is related to the information carried by the features. 
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5. Validation criteria 

As presented in chapter 1, validation criteria for the LR methods can come 
either from the comparison with the state-of-the-art or from a comparison 
with a baseline LR method. The latter case will be used in this report. 

Following validation criteria, based on the performance of the baseline KDE 
method were extracted, presented in table 3 below: 

Table 3 – validation criteria 

Performance 
Characteristic  

Performance 
Metric 

Validation criteria 
 

Accuracy 
 

Cllr, EER 
 

Cllr <= 0.19 
 

Discriminating 
power 
 

Cllrmin 

 
Cllrmin<= 0.15 
EER <= 3.87% 

Calibration 
 

Cllrcal 

 
Cllrcal =< 0.04 

Robustness to 
the lack of 
data 

Cllr, EER 
 

LR values of meaningful and 
interpretable magnitudes  

Coherence 
 
 
 

Cllr, EER 
 
 
 

Cllr12min< Cllr11min  
… 
Cllr6min< Cllr5min 

 
EER12min< EER11min  
… 
EER6min< EER5min 

Generalization 
 

Cllr, EER 
 

CllrSimulated = CllrForensic +/- 5% 
EERSimulated = EERForenscis +/- 5% 
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6. The Validation Report 

Requirement 1. Accuracy 
 
Closeness of agreement between an assigned LR and the ground truth 
status of the proposition in a decision-theoretical framework. 

Metric Cllr 
Representation ECE plot 
Validation 
Criterion 

Validation criterion for accuracy is based on the Kernel Density Function 
(KDE) baseline LR method.  Using the simulated dataset in 8 minutiae 
configuration Cllr(KDE) = 0.19 
 
Better or comparable multimodal LR method Cllr value on the simulated 
dataset in 8minutae configuration is expected than the KDE baseline. 
 
Cllr <= 0.19 

Experiment The Cllr will be measured for both methods – KDE baseline and the 
multimodal LR – on the simulated dataset 

Data Simulated dataset: fingermarks in 8 minutiae configuration, corresponding 
fingerprints, reference subset of operational police database 

Analytical 
result(s) 

Cllr KDE baseline method = 0.19 
Cllr multimodal LR method = 0.15 

 
Validation 
Decision 

Pass 
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Requirement 2. Discriminating power 
 
Performance property representing the capability of a given method to 
distinguish amongst forensic comparisons under each of the propositions 
involved 

Metric EER, Cllrmin 
Representation ECE plot, DET plot 
Validation 
Criterion 

Validation criterion for accuracy is based on the Kernel Density Function 
(KDE) baseline LR method.  Using the simulated dataset in 8 minutiae 
configuration Cllrmin(KDE)= 0.15 and EER(KDE) = 3.87% 
 
Better or comparable multimodal LR method Cllrmin value on the 
simulated dataset in 8minutae configuration is expected than the KDE 
baseline. 
 
Cllrmin<= 0.15 
EER <= 3.87% 

Experiment The Cllr will be measured for both methods – KDE baseline and the 
multimodal LR – on the simulated dataset 

Data Simulated dataset: fingermarks in 8 minutiae configuration, corresponding 
fingerprints, reference subset of operational police database 

Analytical 
result(s) 

Cllrmin KDE baseline method = 0.15 
Cllrmin multimodal LR method = 0.14  

 
EER(KDE) baseline method = 3.87% 
EER multimodal LR method = 3.62% 
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Decision Pass 
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Requirement 3. Calibration 
 
Defined as the property of a given set of LR values for yielding the same 
set of LR values when computing the LR trained from the same data (in 
other words, the LR of the LR is the LR for a given set of LR values) 

Metric Cllrcal 
Representation ECE plot 
Validation 
Criterion 

Validation criterion for accuracy is based on the Kernel Density Function 
(KDE) baseline LR method.  Using the simulated dataset in 8 minutiae 
configuration Cllrcal(KDE)= 0.04 
 
Better or comparable multimodal LR method Cllrcal value on the simulated 
dataset in 8minutae configuration is expected than the KDE baseline. 
 
Cllrcal =< 0.04 

Experiment The Cllr will be measured for both methods – KDE baseline and the 
multimodal LR – on the simulated dataset 

Data Simulated dataset: fingermarks in 8 minutiae configuration, corresponding 
fingerprints, reference subset of operational police database 

Analytical 
result(s) 

Cllrcal KDE baseline method = 0.04 
Cllrcal multimodal LR method = 0.01  

 
Decision Pass 
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Requirement 4. Robustness to the lack of data 
 
Data driven LR methods do have a tendency to provide LR values of 
different magnitudes. Inappropriate (not suitable) LR methods may 
result in LR values of huge magnitudes (LR = +/- infinity, which given 
the limited amount of data can not resemble reality). See chapter 4, 
section 5 for more details. 

Metric N/A 
Representation Tippett plot 
Validation Criterion Reasonably constrained LR values assigned by a LR method.  
Experiment A post-processing  
Data Simulated dataset used for both – KDE baseline and the multimodal 

LR method 
Analytical result(s) 

 

 
From the Tippett plots above it is obvious that the KDE baseline 
method is not a sufficient representation of the simulated dataset. The 
multimodal LR method developed is more robust to the lack of data 
than the KDE baseline method. 
See chapter 4, section 9 for full details.  

Decision Pass 
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Requirement 5. Coherence 
 
Focuses on the variation of some measurable parameters (Cllr, EER) 
in the features (minutiae) studied, perceived as influencing the 
strength of evidence, like the quantity of minutiae in the fingerprint 
field or the signal to noise ratio in speaker recognition field. 

Metric Cllr, Cllrmin, EER 
Representation ECE plot, DET plot 
Validation Criterion Observe improvement in the performance metrics with the increasing 

number of minutiae. 
Experiment Vary the number of minutiae from 5 to 12 minutiae and observe 

improvement in Cllr, Cllrmin and EER 
Data Multimodal LR method trained using the simulated dataset 

Multimodal LR method validated using the forensic dataset 
Analytical result(s) Configuration DET-

EER 
Discrimination 

Calibrated Cllrmin 
Accuracy  

Calibrated Cllr 
5 minutiae 15.9 0.43 0.5 
6 minutiae 6.9 0.26 0.28 
7 minutiae 3.9 0.14 0.16 
8 minutiae 2.4 0.11 0.13 
9 minutiae 1.5 0.063 0.075 
10 minutiae 2.2 0.063 0.074 
11 minutiae 2.7 0.081 0.1 
12 minutiae 1.8 0.057 0.084 
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Decision Pass – with remark 

* There are two cores at the minutiae comparison algorithm. One core 
of the algorithm is used for comparing fingermarks in 5 to 9 minutiae 
configuration; another core is used for comparing fingermarks in 10+ 
minutiae configuration. In order to fully demonstrate the coherence 
effects it would be beneficiary to replace the twin-cored comparison 
algorithm by a dedicated minutiae comparison algorithm that would 
work across the whole range of minutiae configurations.   
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Requirement 6. Generalization: Robustness to previously unseen data and the 
dataset shift 
 
Capability of a method to keep its performance under dataset shift, which is 
here defined as the difference in the conditions between the training or 
population data (used to train the LR methods) and the data that will be used 
as evidence in operational conditions. 

Metric Cllr, EER 
Representatio
n 

ECE plot, DET plot 

Validation 
Criterion 

CllrForensic not worse than CllrSimulated + 5% 
EERForenscis not worse than EERSimulated + 5% 

Experiment Multimodal LR method trained using the simulated dataset and tested using 
the previously unseen forensic dataset. An example using fingermarks in 8 
minutiae configuration will be used.  

Data Multimodal LR method trained using the simulated dataset 
Multimodal LR method validated using the forensic dataset 

Analytical 
result(s) 

CllrSimulated = 0.15 
CllrForensic = 0.17 

 
EERSimulated = 3.62% 
EERForensic = 2.43% 
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Decision ΔCllr = +2.55% (worse performance on the Forensic dataset) 

ΔEER = -32.87% (better performance on the Forensic dataset) 
Pass 
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7. Summary 

The multimodal LR method developed for the forensic fingerprint evidence 
evaluation appears to be satisfying the validation requirements specified in 
chapter 1. Summary across different performance characteristics is 
presented in the table 4 below.  

Table 4 – Validation decisions across different performance characteristics 

Performance 
Characteristic Validation Decision 
Accuracy Pass  
Discrimination Pass  
Calibration Pass  
Robustness Pass  
Coherence 
 

Pass  
*with constraint 

Generalization Pass  

Multimodal LR method constraints 

Coherent behaviour in terms of improvement of LR values produced for the 
range of 5-12 can be observed for 5-9 minutiae configurations and again for 
10-12 minutiae configurations (being judged independently due to the fact 
that two different versions of AFIS comparison algorithm is used – one for 5-
9 minutiae and another one for 10-12 minutiae). 

Multimodal LR method range of application 

Besides the information-theoretical aspect, the ECE provides another 
interesting insight – that is the range of application of the LR method under 
evaluation. We can safely assume that one of the most desirable properties 
of a LR method should be to obtain better performance for the whole range 
of priors than the one of a reference method producing LR = 1 all the time 
(equivalent to I don’t know). Such a reference method has an interesting 
property – in long term it is perfectly calibrated, it is however as well 
completely useless for making predictions. Since the accuracy of a LR 
method in terms of Cllr represents “goodness” of predictions of the LR 
method under evaluation, a LR method can be deemed “good” if the Cllr 
values produced by a LR method don’t exceed the ones of the reference 
method.  
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This gives a rise to the definition of the range of application. The range of 
priors, in which the LR method under evaluation performs better than the 
reference method, represents the range of application of a LR method 
judged using the Cllr metric and shown in the ECE plots. Ranges for 
different minutiae configurations are presented in table 5 below: 

Table 5– Range of application of the multimodal LR method. 

Minutiae 
configuration 

Priorlogodds 
uncalibrated 

Priorlogodds 
calibrated 

5 minutiae <-2.5,0.5> <-2.5,2.4> 
6 minutiae <-2.5,1.4> <-2.5,2.5> 
7 minutiae <-2.5,2.4> <-2.5-2.5> 
8 minutiae <-2.5,2.7> <-2.5,2.5> 
9 minutiae <-2.5,2.5> <-2.5,2.5> 
10 minutiae <-2.5,2.5> <-2.5,2.5> 
11 minutiae <-2.5,2.8> <-2.5,2.5> 
12 minutiae <-2.5,2.5> <-2.5,2.5> 

Conclusion 

The multimodal LR method has been validated for the 5-12 minutiae 
configurations. Even though LR values produced for different minutiae 
configurations show coherent behaviour and the method performance 
“outside” of these configurations could be predicted, minutiae configurations 
outside of the validated minutiae configurations should be subject to further 
experiments and validation.  

Validation Decision 

The multimodal LR method can be deemed fit for forensic casework within 
the constraints indicated. 
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Summary 

There are three more or less important, if not equally important steps that 
lead from the detection of the trace material on a crime scene to the 
presentation of its strength of evidence in court: the recovery of the trace 
material (ideally done by a certified crime-scene investigator), the analysis 
of the trace material (usually done using an accredited method) and the 
forensic evaluation of the analytical results. The interpretation of the 
strength of evidence is ideally done using the logically correct approach. 
Currently it is at best presented as a ratio of probabilities ideally based on 
personal probabilities of forensic practitioners and expressed on a verbal 
scale, also due to the fact there are no criteria of validation and acceptance 
in the practice of the automatic methods for interpretation. A guideline exists 
for the validation of human-based methods for forensic evaluation though 
they differ from laboratory to laboratory 1 . Accreditation standards are 
described for forensic laboratories 2 (EN ISO/IEC 17025), however no 
guideline or framework exists for the validation of (semi)-automatic 
evaluation methods. The necessity for a framework and guidelines for 
validation of semi-automatic likelihood ratio (LR) methods arises for these 
methods to reach the necessary acceptance from the forensic practitioners 
community to be used in practice. A EU requirement for the use of 
accredited methods for the forensic evaluation of DNA and fingerprint 
evidence states that: “Member States shall take the necessary steps to 
comply with the provisions of this Framework Decision in relation to 
dactyloscopic data by 30 November 2015.”  

As the title of the thesis “Validation of Likelihood Ratio Methods Used for 
Forensic Evidence Evaluation: Application in Forensic Fingerprints” 
suggests, this thesis mainly dealt with the forensic interpretation of 
discriminating scores produced by Automated Fingerprint Identification 
System (AFIS) and despite the fact that the validation framework for LR 
methods used for forensic evidence evaluation was in theory developed for 
application across the whole range of biometric modalities, its applicability 
was presented in the area of forensic fingerprints.  

Answering the first research question: “Which criteria should be used to 
validate a LR-based inference model?” several literature surveys were 
conducted, addressing issues of guidelines and standards for validation of 
LR methods used for forensic evidence evaluation (chapter 1); a theoretical 
framework was proposed for the validation of LR methods used for forensic 
evidence evaluation (chapter 1); the theoretical framework developed was 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 European Network of Forensic Science Institutes, Guidelines for the single laboratory Validation of 
Instrumental and Human Based Methods in Forensic Science, working version 04-11-2013 
2 International Organization for Standardization EN ISO/IEC 17025, General requirements for the 
competence of testing and calibration laboratories, ICS: 03.120.20, stage 90/93 (2010-12-15) 
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applied to validate fingerprint LR method based on the AFIS scores (chapter 
7); several issues were addressed in the course of the LR method 
development, namely robustness to the dataset shift (generalization – 
chapter 3,4) and robustness to the lack of data (data sparsity – chapter 4).  

Answering the second research question: “What performance 
characteristics and metrics should be used to report the findings?” the 
measures of accuracy (chapter 1,4,5), discriminating power and calibration 
in (forensic) biometrics (chapter 4,5); use of Bayesian Networks (chapter 6) 
for fingerprint evidence evaluation and evidential value of the first level 
detail fingerprint evidence have been considered; different methods were 
used to calculate the LR’s from the fingerprint AFIS scores and their 
performance evaluated using the performance metrics proposed in the 
theoretical framework (chapter 2,4); the primary performance characteristics 
used for the validation of the LR’s presented in chapter 1 were used as an 
indicator of performance of the human-in-the-loop (appendix A).  

Somewhat remotely stands the development of the Bayesian Network for 
the first level detail (General Pattern) fingerprint evidence evaluation 
(chapter 6).  

A framework for validation of semi-automatic LR methods was presented in 
the first chapter of this thesis, motivated by the validation workshop 
organised in The Hague on 21 – 22 October 2011. This chapter addressed 
the questions of “what is the role of the LR as a part of the decision 
process”, “how to deal with the uncertainty in the LR calculation”, 
“what to validate” and “how to validate the LR methods”. Performance 
metrics deemed suitable for measuring primary and secondary performance 
characteristics were introduced and the non-applicability of performance 
measures for the validation of analytical methods, borrowed from analytical 
methodology, was highlighted.  

The issue of stability of the LR in the LR ≈ 1 region (LR > 1 supporting the 
prosecution and LR < 1 supporting the defence proposition) was presented 
in Chapter 2. The graphical representation chosen in this chapter (bar 
charts) has the tendency to encourage readers do draw “confidence 
intervals” around the LR. Although confidence intervals possess certain 
merit when measuring physical characteristics in analytical measurements 
(for which true values exist), these measures do not seem appropriate when 
dealing with the LR – argument presented in Chapter 1 (paragraph 5.1). On 
the other hand stability in the region where the LR ≈ 1 region is a desirable 
property of a well performing LR method. The LR method used in this 
chapter – the Kernel Density Function – showed unstable behaviour, when 
with the varying amount of data the LR values oscillated between the 
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support of either Hp or Hd propositions. The KDF baseline method was 
replaced by multimodal LR method in Chapter 4.  

Chapter 3 was dedicated to the study of the robustness of the LR-based 
method to a lack of training and test data. The dependence on the quantity 
of data in the modelling stage was highlighted when using two different 
modelling approaches – suspect dependent (suspect anchored) and 
suspect independent (non-anchored). The suspect dependent approach 
showed higher robustness to the lack of training data than the suspect 
independent approach, for which the performance of the LR method 
degraded severely. Although quite illustrative and suitable for the purpose, 
the choice of box-plots might misleadingly encourage readers to draw 
confidence intervals around the LRs, analogous to the bar charts in the 
previous chapter. Currently, two major schools of thought influence the 
forensic community: the “Bayesian” and the “Frequentist”, which causes 
heated discussions regarding how the uncertainty in the forensic evidence 
evaluation should be addressed. The Frequentists petition for the use of 
confidence intervals around the LR values, while the Bayesian like to 
consider the uncertainty encapsulated within the LR method and integrated 
out in the inference process.   

The selection of an appropriate LR method, when dealing with multimodal 
score distributions was addressed in Chapter 4. Kernel Density Function 
(KDF) was used as a baseline LR method, against which the performance 
of a proposed multimodal LR method was evaluated. Despite having 
relatively good discriminating power, the KDF LR method showed sub-
optimal performance in robustness to the lack of data (producing instable 
LRs, sometimes of irrational magnitudes) and the generalization due to 
dataset shift. These issues in particular were addressed in the development 
of the multimodal LR method. Primary performance characteristics were 
used to evaluate the performance of both methods in the modelling stage, 
while the secondary performance characteristics were used to determine 
appropriateness / usability of both the KDF and multimodal LR method.  

Chapter 5 dealt with the coherence of LR values based on the quality of the 
data described by certain measurable parameters (number of minutiae) and 
the quality of the results (LR values) measured by the tools described in 
chapter 1. Chapter 5 firstly provided a definition of coherence and set it into 
the validation framework and subsequently showed an experimental 
example from fingerprint evidence evaluation using the multimodal LR 
method developed in Chapter 4. The comparison algorithm applied to 
computing discriminating scores uses 2 matching methods; hence the 
coherent behaviour of the multimodal LR method was observed separately 
for 5 – 10 minutiae configurations and for 11 and 12 minutiae configurations. 
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While Chapters 2 to 5 focused on the fingerprint minutiae, Chapter 6 was 
dedicated to the first level detail fingerprint evidence – the General Pattern 
(GP) Graphical models – Bayesian Networks (BN) – were used to quantify 
the evidential value of GPs. Although the magnitudes of the resulting LRs is 
relatively low compared to LRs for second level detail fingerprint evidence, 
evidential values obtained from the GP using the BNs were deemed helpful 
in supporting the correct proposition in cases in which extreme distortion is 
present in the crime-scene fingermark and the only information visible 
feature is the GP. Furthermore, assuming independence, the first level 
detail and second level detail fingerprint evidence can be combined.  

Finally, Chapter 7 presented the validation of the multimodal LR model 
developed in Chapter 4 in the form of a validation report. Following the 
framework developed in Chapter 1 the report presented the scope of 
validation, method description, validation criteria and the empirical results. 
The validation report plays a significant role in the process of accreditation 
of such a method.  

Appendix A showed an example of the use of the primary performance 
characteristics when evaluating the LR values based on the features 
extracted from the fingermarks by individual fingerprint examiners and 
automatically compared to the reference fingerprints. Although the initial 
assumption was that given the same training the LR’s produced would show 
similar performance, the results were marginally different. It is important to 
note, that the human – the fingerprint examiner – plays a significant role in 
the forensic process and that the features extracted manually can vary from 
one examiner to another.	    
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Research applications 

1. The validation framework presented in chapter 1 will serve as a 
baseline for guideline for validation of LR methods used for forensic 
evidence evaluation. Despite the fact that the validation framework 
was empirically applied to the forensic fingerprints (presented in a 
form of a validation report in chapter 7), it can be universally applied 
to the range of forensic/biometric LR methods. 

2. The multimodal LR method developed in chapter 4 can be applied to 
a range of forensic/biometric score-based applications, which 
similarly to the NFI AFIS system output multimodal score 
distributions.  

3. As shown in the Appendix A, the performance characteristics/metrics 
developed within the scope of the validation framework can be used 
(given certain assumptions) to evaluate the performance of human 
practitioners. 

Future work 

Several research topics arise from the work conducted in this thesis. 
Following ones are particularly worthy addressing: 

1. Open the validation framework (chapter 1) to the critiques in order to 
foster discussions within the scientific community and develop a 
guideline for the validation of LR methods used for forensic evidence 
evaluation.  

2. Further exploration of additional secondary performance metrics and 
performance characteristics and their importance in the validation 
framework (chapter1). By introducing additional performance 
characteristics the validation procedure would become more robust 
and reliable. 

3. Explore the usefulness of the multimodal LR model developed for 
the fingerprint evidence evaluation in realistic/operational conditions 
(operational validation) by the forensic practitioners (chapter 5).  

4. Application of the validation framework to measure the performance 
of Bayesian Networks and explore the possibilities of combining the 
first and second level detail fingerprint evidence (Appendix A).   



Epilogue 
 

	  174	  

Biography 

The author was born in Košice, Slovak republic on the 31st December 1981. 
He obtained the undergraduate degree from the faculty of Electrical 
Engineering and Informatics at the Technical University in Košice, Slovak 
Republic; graduating in Computer Science and Information Technologies in 
2005.  

In 2007 he completed his graduate studies by obtaining an MSc degree in 
Computer Science and Networking Technology at the Faculty of 
Engineering and Technology at the Manchester Metropolitan University, 
United Kingdom. 

Following the work experience in the Institut français de recherche pour 
l'exploitation de la mer (IFREMER) in La Seyne-sur-Mer (France) in 
underwater robotics; Pildo Labs in Barcelona, Spain and Septentrio in 
Leuven, Belgium in satellite navigation he was offered a PhD fellowship at 
the Netherlands Forensic Institute in collaboration with the University in 
Twente focusing on the validation of LR methods used for forensic evidence 
evaluation.   

  



Epilogue 
 

	   175	  

List of publications 

With forensic relevance: 

R. Haraksim, D. Meuwly, Fingerprint Evidence Evaluation – Robustness to the Lack 
of Data, in proceedings EAFS 2012, Den Haag 

R. Haraksim, D. Meuwly, G. Doekhie, M. Sjerps, P. Vergeer, Assignment of 
evidential value of a fingermark general pattern using a Bayesian Network, in 
proceedings BIOSIG 2013, Darmstadt 

R. Haraksim, D. Meuwly, Influence of the datasets size on the stability of the LR in 
the lower region of the within source distribution, in proceedings BTFS 2013, 
Nijmegen 

R. Haraksim, D. Ramos, D. Meuwly, Validation of Likelihood Ratio Methods for 
Forensic Evaluation: Handling Multimodal Score Distributions, submitted Science 
and Justice 2013 

R. Haraksim, D. Ramos, D. Meuwly, Ch. Berger, Measuring Coherence of 
Computer-Assisted LR methods: Experimental example, submitted Science and 
Justice, 2014 

R. Wang, D. Meuwly, R. Veldhuis, D. Ramos, J. Fierrez, and R. Haraksim, 
Weighted complex spectral minutiae representation for forensic fingerprint 
recognition. Pattern Recognition, 2013a. to be submitted by October, 2013 
 
R. Wang, D. Ramos, D. Meuwly, R. Veldhuis, J. Fierrez, and R. Haraksim, 
Assessing latent fingerprint distortion using forensic databases and minutiae paring 
by human experts, In Proc. BBfor2 Conference on Biometric 
Technologies in Forensic Science (BTFS), Nijmegen, the Netherlands, Oct. 2013e. 
49 

Other: 

R. Haraksim, L. Brignone, J. Opderbecke, Multiple AUV control in an operational 
context: a leader – follower approach, in proceedings Oceans 2008, Bremen 

F. Maurelli, Y. Petillot, A. Mallios, S. Krupinski, R. Haraksim , P. Sotiropoulos, 
Investigation of portability of space docking techniques for autonomous underwater 
docking, in proceedings Oceans 2008, Bremen 

F. Maurelli, F. Aklilu, R. Haraksim, Y. Petillot, Robust localization of an autonomous 
underwater vehicle using sonar data and bayesian techniques, in proceedings 
Oceans 2008, Bremen 



 

  



 

 

 

Appendix A 
 

 

Semi-automatic LR method:  

Measuring performance of the human-in-the-loop  

 
Rudolf Haraksim 



 



Appendix A 
 

	   179	  

1. Introduction 

A very important aspect worthy consideration is the human factor in the 
process of fingerprint evidence evaluation using a validated semi-automatic 
LR method. Three roles of human involvement in the process have been 
identified: at the level of the methodology - choice of the technology and 
inference (LR) method, at the level of the development - implementation of 
the technology and inference (LR) method and at the level of the practice - 
use of the inference (LR) method in forensic practice. Another important 
aspect of the human factor is the acceptance of the validation process and 
the decision of using the LR method in practice, which involves setting up a 
hybrid approach for merging the evaluated strength of evidence of the 
human-based and semi-automatic method.  

While the analytical results produced by computational methods are 
straightforward to interpret, the performance of human-based methods for 
interpretation and the human factor in the decision process should also be 
critically addressed. Given the same inputs, a computer-based LR method 
will always output a LR of the same magnitude (human factor in the LR 
method development resides in the choices made by the forensic 
developer); the same piece of evidence evaluated independently by two 
human examiners on the other hand might yield a different answer. This 
being said, the repeatability and reproducibility to the unitary precision of the 
LR is hardly the biggest issue1. Measuring performance of humans perhaps 
better fits within the domain of psychometrics, but using the primary 
performance characteristics described in Chapter 1, the validation 
framework developed can be extended to evaluate the performance of 
human examiners the same way it is used for evaluation of different LR 
methods. 

Using an example from fingerprints we will attempt to evaluate the 
difference in the likelihood ratios produced by a LR method from the 
similarity scores, based on the feature vectors2 extracted by the fingerprint 
examiners from the fingermarks and start with these assumptions3: 

1. Treat each human (fingerprint examiner) as an independent “feature 
extraction system”. The fingerprint examiners were trained in the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Several approaches exploiting the same set of features should provide answers within a 
certain range and the LR value should be supported empirically with relevant data with the 
scientifically sound inferences made. 
2Feature vectors considered here consist of spatial configuration of minutiae poitns and their 
orientation.  
3 We measure the performance of a subtask performed by the practitioner, it is not really the 
performance of the assignment of the strength of evidence that is directly measured. 
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same way, they should extract the features in the same way and the 
resulting LR values are expected be similar. 

2. Ground truth is known for each fingermark and fingerprint pair. 

3. Each examiner extracts the features from the constant number of 
fingermarks. 

4. The feature comparison algorithm and the LR method do not 
change. 

In the following example we aim to assess the performance of the LR values 
based on the similarity scores produced from the features vectors extracted 
by different fingerprint examiners. 

2. Experimental example 

Due to the limited number of participants – three – in this study, the 
following results are to be taken as an example of how the performance of 
“human examiners” can be evaluated, rather than as a prescriptive 
framework. The performance characteristics used for fingerprint examiner 
performance evaluation are in length described in chapter 1 paragraph 5 
and related performance metrics in paragraph 6. Measuring the accuracy 
(Cllr), discriminating power (EER and Cllrmin) and calibration (Cllrcal) we 
obtained results summarized in the table 1 below. 

Table 1: Comparison of performance of three different fingerprint examiners 

Performance 
characteristic 

Performance 
measure 

Examiner 1 Examiner 2 Examiner 3 

Accuracy  Cllr 0.17 0.18 0.7 
Discriminating 
power 

EER 2.42 3.01 6.9 
Cllrmin 0.11 0.1 0.27 

Calibration Cllrcal 0.06 0.08 0.43 

Accuracy, discriminating power and calibration of the LR values of the 
features extracted by examiners 1 and 2 show similar results, while the LR 
values of the features extracted by examiner 3 appears to show lower 
performance. It is however rather difficult to draw any kind of conclusions 
based on such a small sample. The difference observed between the 
examiner 3 and the examiners 1 and 2 in this case depends on the amount 
of experience and will be subjected to further evaluation. Having used 
identical datasets, the same feature comparison algorithm and the same LR 
method for evaluation of fingermark evidence, it gives an indication that the 
differences observed are at the fingermark feature extraction level, which 
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was the only task of the fingerprint practitioner (the rest of the procedure 
was fully automated). It is important to realize, that in the evidence 
evaluation process presented only one parameter varies, namely the feature 
extraction from fingermarks – which is in any case human task. 

Figures 1 to 3 below provide a graphical representation of the results in 
table 1. The plots of accuracy (ECE), discriminating power (DET and ECEmin 
plot) and calibration (Tippett plot) as specified in chapter 1 (paragraph 6.3) 
of this thesis will be used. 

 
Figure 1: ECE plots (Examiner1 & Examiner2 & Examiner3 – 8 minutiae configuration 

dataset) 

Figure 1 presents the ECE plot, capturing the accuracy and discriminating 
power of the LRs achieved by the comparison algorithm based on the 
features provided by individual practitioners. Recall from chapter 1 
paragraph 6.3, that the blue dashed line (ECEmin) represents the 
discriminating power for each practitioner, red line (ECE) represents the 
accuracy for each practitioner and black dashed line represents a neutral 
system that always outputs LR = 1. The intersection of ECE and ECEmin with 
prior log odds = 0 we find values of Cllr and Cllrmin. From the ECE plots we 
can also conclude similar accuracy and discriminating power of the 
examiners 1 and 2 and somewhat lower performance of examiner 3.  
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Figure 2: DET plots (Examiner1 & Examiner2 & Examiner3 – 8 minutiae configuration 
dataset) 

The lower performance of the LR’s based on the features extracted by 
examiner 3 is also observed in DET plots presented in figure 2. While the 
discriminating power of the LR values of examiner 1 and 2 is almost similar 
(black dashed and black solid lines), the accuracy of the LR values of 
examiner 3 (solid grey line) is more than twice as bad, as confirmed by the 
equal error rate (please note that the equal error rate represents one single 
operating point on the DET curve and there may be other operating points 
worthy considering).  

Tippett plots presented in figure 3 conclude the graphical representation of 
the performance evaluation. Similar performance of LR values based on the 
features of the examiners 1 and 2 is clearly visible (black solid and black 
dashed line), together with the sub-optimal performance of the LR’s of the 
examiner 3 (solid grey line). Further visible in the Tippett plots is the 
miscalibration of the third examiner when compared to the first two 
examiners. This is visible by marginally disproportional rates of misleading 
evidence in the upper curve of the Tippett plot supporting the prosecution 
proposition. 



Appendix A 
 

	   183	  

 
Figure 3: Tippett plots (Examiner1 & Examiner2 & Examiner3 – 8 minutiae configuration 

dataset) 
 

Even though the three examiners in our example received the same training 
and should have extracted the fingermark features in the same way, the 
performance measures of accuracy, discriminating power and calibration 
vary, especially in the case of the LR’s based on the features extracted by 
the examiner 3 and of the LR values based on the features extracted by the 
examiners 1 and 2. The differences observed are closely related to the 
years of practice and the amount of experience of each of the participating 
examiners.  

The example above highlights the usefulness of validation tools presented 
and their potential use in performance assessment of forensic examiners. 
They partially allow monitoring the degree of expertise and the development 
of a practitioner.  
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3. Conclusion 

Although the aim of this thesis was development of validation framework for 
semi-automatic LR methods, it is very important to realize, that it is the 
practitioner, who is in charge of the forensic process. The tools developed in 
for the valuation of the performance of LR methods provided to the 
practitioner help him in his evidence evaluation task.  It is the human – 
forensic examiner, who chooses the features that feed the automated 
comparison algorithm and it is also the human – forensic evaluator, who is 
responsible for choosing a “well performing” LR method. It is again the 
human – the fact finder, who combines the LR values with relevant prior 
information supplied in case to make appropriate decision. Using the tools 
developed, the practitioner should be able to put the results in a meaningful 
perspective and to detect erroneous behaviour or unexpected results. 

The aim of this work was not to eliminate the human practitioner from the 
process, since the forensic traces remain challenging to be adequately 
perceived by off-the-shelf biometric feature extraction algorithms and the 
human forensic practitioners remain a solid chain in the interpretation of the 
strength of evidence. The tools presented, applied to the human-in-the-loop 
performance evaluation, can be used to get better information about the 
degree of proficiency of each practitioner in the development, rather than in 
a competitive perspective.  
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